Calreticulin inhibits commitment to adipocyte differentiation

Eva Szabo,1 Yuanyuan Qiu,2 Shairaz Baksh,3 Marek Michalak,2 and Michal Opas1

1Department of Laboratory Medicine and Pathobiology, Institute of Medical Sciences, University of Toronto, Toronto, Ontario M5S 1A8, Canada
2Department of Biochemistry and 3Department of Pediatrics and Child Health, University of Alberta, Edmonton, Alberta T6G 2H7, Canada

Calreticulin, an endoplasmic reticulum (ER) resident protein, affects many critical cellular functions, including protein folding and calcium homeostasis. Using embryonic stem cells and 3T3-L1 preadipocytes, we show that calreticulin modulates adipogenesis. We find that calreticulin-deficient cells show increased potency for adipogenesis when compared with wild-type or calreticulin-overexpressing cells. In the highly adipogenic CRT−/− cells, the ER lumenal calcium concentration was reduced. Increasing the ER lumenal calcium concentration led to a decrease in adipogenesis. In calreticulin-deficient cells, the calmodulin–Ca2+/calmodulin-dependent protein kinase II (CaMKII) pathway was up-regulated, and inhibition of CaMKII reduced adipogenesis. Calreticulin inhibits adipogenesis via a negative feedback mechanism whereby the expression of calreticulin is initially up-regulated by peroxisome proliferator–activated receptor γ (PPARγ). This abundance of calreticulin subsequently negatively regulates the expression of C/EBPα, C/EBPδ, α2, and aP2. Thus, calreticulin appears to function as a Ca2+-dependent molecular switch that regulates commitment to adipocyte differentiation by regulating the expression of transcriptional activation of critical proadipogenic transcription factors.

Introduction

Obesity is rapidly becoming one of the world’s biggest epidemics, leading to numerous medical conditions, including cardiovascular disease. The development of obesity is marked by both an increase in adipocyte size and number. Some consequences of differentiation of the stem cells or preadipocytes into mature adipocytes (for review see Gesta et al., 2007) include increased Ca2+ homeostasis in adipogenesis. Increased Ca2+ levels lead to inhibition of adipocyte differentiation, which is accompanied by the decrease or, in some cases, the loss of PPARγ2, C/EBPα, and aP2 expression (Jensen et al., 2004; Serlachius and Andersson, 2004; Zhang et al., 2007). Thapsigargin, an inhibitor of the sarco/ER Ca2+-ATPase, inhibits adipocyte differentiation in 3T3-L1 preadipocytes (Ntambi and Takova, 1996; Shi et al., 2000), suggesting a role for ER stores and ER Ca2+-binding proteins in the modulation of adipogenesis.

Calreticulin is a major Ca2+-buffering protein in the lumen of the ER, which also acts as a molecular chaperone and modulator of gene expression (Bedard et al., 2005). The two major functions of calreticulin, chaperoning and Ca2+ buffering, are confined to specific protein domains. The N+P domain of calreticulin forms a folding module, and the acidic C-terminal C domain binds and buffers Ca2+ with high capacity (Baksh and Michalak, 1991; Nakamura et al., 2001). Calreticulin deficiency is embryonic lethal (Mesaeli et al., 1999), and calreticulin-deficient cells have a reduced capacity for Ca2+ storage.
Results

Calreticulin deficiency promotes adipogenesis

Fig. 1A shows that the adipogenic potential of ES cells, as measured by oil red O staining at differentiation day 20 (D20), was ∼30-fold higher in the absence of calreticulin. The number of adipocyte colonies in calreticulin-deficient embryoid bodies (EBs) was approximately ninefold higher than that in the calreticulin-containing EBs at D20 (Fig. 1B). This was irrespective of whether the calreticulin gene was removed by homologous recombination (G45crt−/− cells) or by Cre within the ER and impaired agonist-stimulated Ca²⁺ release from ER stores, whereas cells overexpressing calreticulin have higher levels of luminal ER Ca²⁺ and a larger pool of releasable Ca²⁺ (Nakamura et al., 2001). Calreticulin’s impact on protein folding and Ca²⁺ homeostasis have been implicated in several signaling pathways (Bedard et al., 2005), thus affecting gene expression and, consequently, the behavior of individual cells and cell communities. In this study, we show that calreticulin may act as a Ca²⁺-dependent molecular switch that negatively regulates commitment to adipocyte differentiation by preventing the expression and transcriptional activation of critical pro-adipogenic transcription factors.
Calreticulin modulates adipogenic commitment

• Szabo et al.

Calreticulin-deficient and calreticulin-containing cells, which makes it difficult to visualize all of them when equally loaded. Modulation of the expression of calreticulin also impacted adipogenesis of 3T3-L1 preadipocytes, a commonly used model for adipogenesis (Otto and Lane, 2005). Increased expression of calreticulin in 3T3-L1 preadipocytes inhibited their adipogenesis, as indicated by oil red O staining (Fig. 1 E). In agreement with ES cell results, molecular markers of adipogenesis (lipoprotein lipase, aP2, PPARγ2, C/EBPα, and C/EBPβ) were all down-regulated in 3T3-L1 cells overexpressing calreticulin (Fig. 1 F).

Upon induction of adipogenesis with RA, the abundance of calreticulin increased dramatically in the WT ES cells (Fig. 2 A), whereas the abundance of PPARγ2 and C/EBPα remained persistently low (Fig. 2, B and C). In contrast, in calreticulin-deficient (G45crt−/−) cells after induction of adipogenesis with RA, PPARγ2 and C/EBPα levels steadily increased over 20 d of differentiation (Fig. 2, B and C). Similar to the WT ES cells, the 3T3-L1 preadipocytes and 3T3-L1 cells overexpressing calreticulin showed an increase in calreticulin abundance and reduced adipogenic potential upon RA treatment (Fig. 2, D and E). We concluded that the increased expression of calreticulin plays a negative regulatory role during adipogenesis.
Changes in the intracellular Ca²⁺ concentration affect adipogenesis

One important function of calreticulin is modulation of Ca²⁺ homeostasis (Nakamura et al., 2001; Bedard et al., 2005). Thus, we next examined whether calreticulin-dependent changes in Ca²⁺ homeostasis might be responsible for modulation of adipogenesis. We used BAPTA-AM, a membrane-permeable Ca²⁺ chelator (Tsien, 1980), to lower cytosolic Ca²⁺ concentration ([Ca²⁺]_{cytosol}) as well as ionomycin, a Ca²⁺ ionophore (Bergling et al., 1998), to increase [Ca²⁺]_{cytosol}. Treatment of cells with BAPTA from 20 min to 2 h produced exactly the same results (unpublished data), which implies that BAPTA was not secreted from the cells. BAPTA-AM–treated WT and L7 cells showed a dramatic increase in oil red O staining, indicating that chelation of cytoplasmic Ca²⁺ promoted adipogenesis in these cells (Fig. 3, A and B). There was no significant increase in oil red O staining in BAPTA-AM–treated calreticulin-deficient ES cells (G45crt⁻/⁻ or L7crt⁻/⁻; Fig. 3, A and B). In contrast, after treatment with ionomycin, there was no detectable oil red O–positive adipocytes derived from WT and L7 cells, whereas differentiation of both calreticulin-deficient cell lines (G45crt⁻/⁻ and L7crt⁻/⁻) produced an extremely low number of oil red O–positive cells (Fig. 3, A and B).

In agreement with oil red O staining results, BAPTA-AM treatment significantly increased the abundance of all three adipogenic markers in adipocytes derived from WT and L7 cells containing calreticulin but did not have a significant effect on adipocytes derived from calreticulin-deficient (G45crt⁻/⁻ and L7crt⁻/⁻) ES cells (Fig. 3, C and D). Conversely, ionomycin treatment decreased the adipogenic marker expression in calreticulin-deficient (G45crt⁻/⁻ and L7crt⁻/⁻) cells. (D) Quantitative analysis of relative adipogenic marker expression after BAPTA-AM treatment (P < 0.01; n = 6). (E) Quantitative analysis of relative adipogenic marker expression after ionomycin treatment (P < 0.01; n = 6). Error bars represent SD.

Figure 3. Changes in intracellular Ca²⁺ concentration affect adipogenesis. BAPTA-AM, a membrane-permeable Ca²⁺ chelator, was used to lower cytosolic Ca²⁺ concentration, whereas a Ca²⁺ ionophore was used to increase it. (A) WT and L7 ES cells showed increased oil red O staining after treatment with BAPTA-AM, whereas no substantial change was discernible in calreticulin-deficient ES cells (G45crt⁻/⁻ and L7crt⁻/⁻). Ionomycin treatment decreased oil red O staining in calreticulin-deficient ES cells. (B) Colorimetric assay of oil red O staining in the ES cells treated as in A (n = 6). (C) Treatment with BAPTA-AM increased the expression of PPARγ2, C/EBPα, and aP2 in WT or L7 ES cell lines. Conversely, ionomycin treatment decreased the adipogenic marker expression in calreticulin-deficient (G45crt⁻/⁻ and L7crt⁻/⁻) cells. (D) Quantitative analysis of relative adipogenic marker expression after BAPTA-AM treatment (P < 0.01; n = 6). (E) Quantitative analysis of relative adipogenic marker expression after ionomycin treatment (P < 0.01; n = 6). Error bars represent SD.
Figure 4. Expression of the P+C domains of calreticulin reduces adipogenesis. (A) A schematic of the structural and functional calreticulin domains as well as Western blot analysis (with anti-HA antibodies) of G45crt+/− ES cells expressing the N+P and P+C domain of calreticulin. (B) Oil red O staining in WT, G45crt−/−, and G45crt+/− ES cells expressing P+C and N+P domains. G45crt−/− cells expressing the P+C domain had decreased staining compared with the G45crt+/− cells. When the cells were treated with 50 nM BAPTA-AM, both the P+C domain-expressing and WT ES cells showed a dramatic increase in oil red O staining. The N+P domain-expressing ES cells had oil red O staining similar to that of the G45crt−/− ES cells. When the cells were treated with 500 nM ionomycin, both the N+P domain-containing and G45crt−/− ES cells showed a decrease in oil red O staining. (C) Expression of the P+C domain in 3T3-L1 cells (3T3-L1 + [P+C]) reduced oil red O staining. Because 3T3-L1 is used as a control, it is always counted as 1. Expression of the P+C domain was confirmed using HA antibody. (D) Adipogenic marker expression was decreased in the P+C domain-expressing G45crt+/− cells when compared with the G45crt−/− cells (P < 0.01; n = 6) and was comparable to that in WT cell levels (P > 0.05). BAPTA-AM treatment increased adipogenic marker expression in all cell lines (n = 6). (E) Fura-2-AM–loaded ES cells were treated with thapsigargin or ionomycin to measure ER-releasable and cytosolic [Ca^{2+}] levels. WT and P+C domain–expressing G45crt+/− cells had higher [Ca^{2+}]_ER and [Ca^{2+}]_cyt than the G45crt−/− cells (n = 3). (F) 45Ca^{2+}-loaded 3T3-L1 cells were treated with thapsigargin or ionomycin to measure [Ca^{2+}]_ER and [Ca^{2+}]_cyt levels. 3T3-L1 + CRT cells (overexpressing calreticulin) and 3T3-L1 expressing the P+C domain had higher [Ca^{2+}]_ER and [Ca^{2+}]_cyt than the control 3T3-L1 cells (n = 3). Error bars represent SD.
Figure 5. PPARγ activates the calreticulin gene. (A) A schematic representation of reporter plasmids used in this study. The calreticulin promoter (pLCC0) contains two PPRE sites: PPRE1 (−1,944 bp) and PPRE2 (−590 bp). Two promoter deletion constructs (pLC1 and pLC2) and two promoter constructs, one containing a mutation of PPRE1 (pLC0mt1) and the other containing a mutation of PPRE2 (pLC0mt2), were used to identify PPRE sites activated by PPARγ on the calreticulin promoter. (B) To analyze the effect of PPARγ and RXRγ on the calreticulin promoter, NIH3T3 cells were transiently cotransfected with the PPARγ and RXRγ expression plasmids with a luciferase reporter gene controlled by the calreticulin promoter as indicated in A. Individual controls were obtained for each expression plasmid, and data were plotted relative to that control (luciferase/β-galactosidase). The data shown are mean ± SD (error bars) of three independent experiments. (C) EMSA analysis was performed to demonstrate the binding of PPARγ to the PPRE1 and PPRE2 elements on calreticulin promoter. The positions of PPARγ–RXRγ–DNA complexes are indicated. White lines indicate that intervening lanes have been spliced out. (D) Supershift EMSA analysis of PPARγ binding to the PPRE1 and PPRE2 elements on calreticulin promoter using anti-HA tag antibody was used to show the binding of transcriptional factor to the DNA element. Mutated PPRE1 and PPRE2 oligonucleotide show no interaction with PPARγ. Arrows mark PPARγ complexes with either PPRE1 or PPRE2. (E) ChIP analysis of a putative PPARγ-binding site in the mouse calreticulin promoter was used to show binding of PPARγ to the endogenous calreticulin promoter. Lane 1 shows input DNA, lane 2 is a negative control without antibody treatment, and lane 3 shows ChIP with antibodies.

Modulation of adipogenesis by functional modules of calreticulin
Calreticulin has two structural and functional domains (Nakamura et al., 2001); one responsible for chaperoning, and another for Ca\(^{2+}\) buffering (Fig. 4 A). To determine which of calreticulin’s functions (domains) may be involved in the modulation of adipogenesis, two ES cell lines expressing single functional modules of calreticulin in calreticulin-deficient ES cells (G45.crt\(^{-/-}\)) were created and tested for adipogenic potential. Because the C domain of calreticulin cannot be stably maintained, it was fused to the P domain of calreticulin (Nakamura et al., 2001).

Expression of the domains was tracked using anti-HA antibodies (Fig. 4 A).

Fig. 4 B shows that reexpression of the P+C domain in calreticulin-deficient cells inhibited adipogenesis (Fig. 4 B and D). Overexpression of the P+C domain in 3T3-L1 preadipocytes also resulted in reduced adipogenesis (Fig. 4 C). Treatment of the P+C domain–expressing crt\(^{-/-}\) ES cells with BAPTA-AM restored their adipogenic potential (Fig. 4, B and D). In contrast, expression of the N+P domain in crt\(^{-/-}\) ES cells had no significant effect on their ability to differentiate into adipocytes, and they maintained a phenotype identical to calreticulin-deficient
domains did not contain substantial quantities of Ca²⁺. Thus, we conclude that the chaperone function of calreticulin was not involved in the modulation of adipogenesis. Therefore, crr⁻/⁻ cells expressing the N-P domain of calreticulin displayed features resembling those of the WT ES cells, whereas crr⁻/⁻ cells expressing the Ca²⁺-buffering region of calreticulin were similar to those of WT cells, indicating that calreticulin modulates adipogenesis via its Ca²⁺ homeostatic function.

To assess whether calreticulin expression is modified in adipocytes expressing Ca²⁺ handling regions of calreticulin, we performed equilibrium loading experiments with calreticulin-deficient ES cells and calreticulin-expressing CGR8 ES cells. Similar to the ES cells, overexpression of calreticulin in the 3T3-L1 preadipocytes that were transfected with crr⁻/⁻ or crr⁺/⁺ ES cells resulted in increased [Ca²⁺]ₜot and [Ca²⁺]тр compared with the WT control 3T3-L1 cells (Fig. 4H). Finally, ionomycin may not contain substantial quantities of Ca²⁺. The results so far suggested that calreticulin plays a modulatory role during adipogenesis. We next wanted to determine whether there was a functional relationship between calreticulin and the PPARγ transcriptional complex. Upon RA-dependent induction of adipogenesis, RXR and PPARγ form a transcriptionally active complex. The calreticulin promoter contains two PPARγ-binding sites termed peroxisome proliferator responsive elements (PPREs); one is found at −1,944 bp (designated PPRE1), and the other is found at −590 bp (designated PPRE2; Fig. 5A), suggesting that the PPARγ transcription factor may regulate the calreticulin gene. To test this, NIH3T3 fibroblasts were cotransfected with PPARγ expression vector and RXRα expression vector (pLC0, pLC1, pLC2, pLC0mt1, and pLC0mt2) or luciferase reporter gene vectors (pCL2 and pCL3; Fig. 5A) under control of the calreticulin promoter. pSVβ-galactosidase was used as an internal control. In the pLC0 vector, luciferase was controlled by the calreticulin-dependent changes in intracellular Ca²⁺.

Functional relationship between calreticulin and PPARγ

The results so far suggested that calreticulin plays a modulatory role during adipogenesis. We next wanted to determine whether there was a functional relationship between calreticulin and the PPARγ transcriptional complex. Upon RA-dependent induction of adipogenesis, RXR and PPARγ form a transcriptionally active complex. The calreticulin promoter contains two PPARγ-binding sites termed peroxisome proliferator responsive elements (PPREs); one is found at −1,944 bp (designated PPRE1), and the other is found at −590 bp (designated PPRE2; Fig. 5A), suggesting that the PPARγ transcription factor may regulate the calreticulin gene. To test this, NIH3T3 fibroblasts were cotransfected with PPARγ expression vector and RXRα expression vector (pLC0, pLC1, pLC2, pLC0mt1, and pLC0mt2) or luciferase reporter gene vectors (pCL2 and pCL3; Fig. 5A) under control of the calreticulin promoter. pSVβ-galactosidase was used as an internal control. In the pLC0 vector, luciferase was controlled by the calreticulin promoter containing both PPRE sites (Fig. 5A and Fig. S2, available at http://www.jcb.org/cgi/content/full/jcb.200712078/DC1). Fig. 5B shows that PPARγ induced luciferase activity in NIH3T3 cells. Cells transfected with
promoterless control plasmids showed no detectable luciferase activity (unpublished data). This finding indicates that PPARγ activates transcription of the calreticulin gene.

To identify the PPARγ-binding site on the calreticulin promoter, we performed reporter gene assay with calreticulin promoter deletions and mutations (Fig. 5, B and C). Deletion of PPRE1 and PPRE2 sites (pLC2 vector) completely abolished PPARγ-dependent activation of the calreticulin promoter (Fig. 5 B). Deletion of PPRE site 2 at −1,944 bp (Fig. 5 A) or mutation of PPRE site 1 or 2 (Fig. 5 A) had no effect on PPARγ activation of the promoter (Fig. 5, B and C). Thus, upon induction of adipogenesis with RA, RXR and PPARγ form a complex, which binds PPRE sites 1 and 2 on the calreticulin promoter and transcriptionally activates the calreticulin gene.

To further elucidate a physical interaction between the calreticulin promoter and PPARγ, an electrophoretic mobility shift assay (EMSA) was performed (Fig. 5 C). Synthetic oligodeoxynucleotides corresponding to PPRE sites 1 and 2 were used along with a positive control probe, an ideal PPAR site. Fig. 5 C shows that the PPARγ–RXRα complex bound to PPRE1 and PPRE2. This DNA–protein interaction was only observed in the presence of RXRα, indicating that PPARγ is only functional once complexed with RXRα (Fig. 5 C). The specificity of the PPRE and PPARγ–RXRα binding was confirmed by reduced signal intensity after the addition of 30-fold excess of cold probe (Fig. 5 C). The lesser intensity in PPRE1 complexes (Fig. 5 C, lanes 4 and 6) when compared with complexes containing the ideal PPRE site (Fig. 5 C, lane 10) is likely the result of the different nucleotide sequences of these probes. Specificity of the binding was further confirmed by supershift EMSA and competition with non-PPRE sites (Fig. 5 E). Chromatin immunoprecipitation (ChIP) was also performed to determine whether there is a physical interaction between the calreticulin promoter and PPARγ. ChIP analysis indicated that PPARγ bound to both PPRE sites 1 and 2 on the calreticulin promoter (Fig. 5 E). We concluded that the PPARγ–RXRα complex binds to calreticulin PPRE1 and PPRE2 sites and activates the calreticulin gene.

PPARγ2, along with C/EBPα, directly affect gene transcription in the nucleus (Rosen, 2005; Rosen and MacDougald, 2006). Given that PPARγ2 is both necessary and sufficient for adipogenesis (Rosen et al., 2000), we determined its spatial expression during adipogenesis in our ES cell system (Fig. 6). On D20 of differentiation in the crt−/− ES cells (which exhibit increased adipogenesis), PPARγ2 was distinctly nuclear (Fig. 6 A). However, in the WT ES cells, PPARγ2 was barely detectable and appeared cytosolic (Fig. 6 B). Given that the WT ES cells show reduced adipogenesis and, thus, only sparse adipocyte colonies, Fig. 6 B represents a region of low adipogenic potential that predominates in WT outgrowths. Localization of C/EBPα was also investigated in the ES cells, and it showed an essentially identical pattern to that observed for PPARγ2 (unpublished data).

Calmodulin/CaMKII, C/EBPα, and calcineurin during adipogenesis

Calmodulin–Ca2+/calmodulin-dependent protein kinase II (CaMKII) and cAMP response element binding (CREB) pathways affect adipogenesis (Wang et al., 1997; Reusch et al., 2000). Western blot analysis with anti-Thr286–phosphorylated CaMKII, anticalmodulin, and anti-Ser133–phosphorylated CREB antibodies showed that their expression was higher in calreticulin-deficient G45crt−/− and L7crt−/− cells than in WT and L7 cells at the end of the adipogenic differentiation (Fig. 7, A and B). These results indicate that calreticulin binds CREB play a positive role during adipogenesis by increasing cAMP. Calmodulin/CaMKII pathway is also known to affect calcineurin activity (Guo et al., 2002; Lynch et al., 2002; Kennell and MacDougald, 2005) and is known to affect calcineurin activity (Guo et al., 2002; Lynch et al., 2005). On D20, calcineurin activity was significantly higher in the WT ES cells than in the calreticulin-deficient cells (Fig. 7 G). In the 3T3-L1 preadipocytes, inhibition of calcineurin with cyclosporin-A promoted adipogenesis (Fig. 7, H and I), whereas constitutive expression of activated calcineurin decreased adipogenesis (Fig. 7, H and I). These data give support for the
role of calcineurin in adipogenesis of both ES cells and 3T3-L1 preadipocytes. The present findings are consistent with earlier studies relating activation of calcineurin to the presence of calreticulin (Lynch and Michalak, 2003; Lynch et al., 2005).

Discussion

In this study, we show that calreticulin affects adipocyte differentiation from either ES cells or 3T3-L1 preadipocytes. The absence of calreticulin sways ES cell differentiation toward the adipocyte lineage. This choice of fate is reversed to the WT phenotype by overexpression of calreticulin or by the Ca\(^{2+}\)-buffering domain of calreticulin but not by expression of the chaperoning domain of the protein. These effects of calreticulin are likely mediated through its Ca\(^{2+}\) regulatory function. In comparison to WT cells, calreticulin-deficient ES cells have reduced ER Ca\(^{2+}\) storage capacity, resulting in reduced ER Ca\(^{2+}\) release upon stimulation. Expression of full-length calreticulin or the calreticulin Ca\(^{2+}\)-buffering domain in ES cells or 3T3-L1 cells increases ER Ca\(^{2+}\) content and reduces the commitment of these cells to adipogenesis. In WT cells, chelating cytoplasmic [Ca\(^{2+}\)] enhances adipogenesis, and, conversely, increasing cytoplasmic [Ca\(^{2+}\)] inhibits adipogenesis. These Ca\(^{2+}\) effects may negatively affect Ca\(^{2+}\)-dependent transcriptional pathways that are required for adipogenesis. Calreticulin exerts its Ca\(^{2+}\) effects within the first 3 d of differentiation, as manipulation of intracellular Ca\(^{2+}\) at later stages of differentiation (i.e., D7 or D9) had no effect on the progression of adipogenesis. Moreover, we show here that an increase in intracellular Ca\(^{2+}\) enhances adipogenesis, and, conversely, increasing cytoplasmic Ca\(^{2+}\) levels accumulated little or no cytoplasmic lipids and decreases ER Ca\(^{2+}\) homeostasis. Ca\(^{2+}\) has previously been shown to affect adipogenesis (Wang et al., 1997; Malaisse-Lioud, 2002; Kennell and MacDougald, 2005). The CaMKII pathway is involved in C/EBP\(\alpha\) regulation and, thus, indirectly in PPAR regulation. CaMKII activates CREB, which, in turn, activates C/EBP\(\alpha\) (Fajas et al., 2002; Wang et al., 2003; Zhang et al., 2004). CREB plays a role in adipogenesis, and, indeed, expression of dominant-negative CREB blocks adipogenesis (Reusch et al., 2000; Klemm et al., 2001; Reusch and Klemm, 2002; Fox et al., 2006; Vankoningsloo et al., 2006). CaMKII is also involved in the activation of PPAR\(\gamma\) (Paez-Pereda et al., 2005; Park et al., 2007), indicating that the CaMKII pathway may be critical during adipogenesis. Once C/EBP\(\alpha\) is expressed, PPAR\(\gamma\) and C/EBP\(\alpha\) regulate each other, thereby promoting adipogenesis (Rosen, 2005). Here, we show that increased levels of threonine-phosphorylated CaMKII in calreticulin-deficient cells correlate with their increased adipogenesis, and inhibition of CaMKII attenuates adipogenesis in these cells. In calreticulin-deficient cells, in addition to increased CaMKII activity, calmodulin and CREB are also up-regulated, thus explaining the elevated adipogenesis in these cells.

Conversely, decreasing intracellular Ca\(^{2+}\) concentrations promotes adipogenesis of calreticulin-deficient ES cells. The relationship between calreticulin expression, intracellular Ca\(^{2+}\) concentration, and adipogenesis implies that calreticulin exerts its effects on adipogenesis via its Ca\(^{2+}\) homeostatic function. However, the formal proof comes from experiments in which functional modules of calreticulin were expressed in calreticulin-deficient ES cells. Upon expression of calreticulin’s Ca\(^{2+}\)-buffering P+C domain, adipogenesis was halted, whereas expression of the N+P domain had no effect on the progression of adipogenesis.

Our findings that calreticulin affects the commitment to adipocyte differentiation are in line with reports that calreticulin-dependent Ca\(^{2+}\) signaling also affects several aspects of the differentiation of cardiomyocytes (Li et al., 2002; Grey et al., 2005; Puceat and Jaconi, 2005) and human myeloid cells (Clark et al., 2002). Interestingly, diminished intracellular Ca\(^{2+}\) stores attenuate cardiomyogenesis but promote adipogenesis and differentiation of myeloid cells. Combined, these findings imply that calreticulin and ER Ca\(^{2+}\) must play important roles in a variety of differentiation pathways. Moreover, our data regarding timing of the Ca\(^{2+}\) manipulations indicate that in adipogenesis, as in cardiomyogenesis (Puceat et al., 2002), there is a calreticulin-mediated checkpoint step referred to as a commitment step.
Calreticulin modulates PPARγ activity through a negative feedback mechanism

PPARγ2 and C/EBPα are crucial transcription factors during adipogenesis (Rosen, 2005); however, although PPARγ2 is necessary for adipogenesis to take place (Rosen et al., 2000), C/EBPα has a more accessory role during this process (Rosen et al., 2002). We showed here that PPARγ2 and C/EBPα are down-regulated in cells expressing calreticulin. Therefore, calreticulin may act as a transcriptional regulator of PPARγ. One line of evidence against this hypothesis is that PPARγ is necessary and sufficient for adipogenesis (Rosen et al., 2000); however, we found that PPARγ2 protein is not detectable in calreticulin-expressing cells. We propose that although the calcineurin pathway inhibits adipogenesis, the Ca2+-independent CaMKII pathway might be responsible for the promotion of adipogenesis in the absence of calreticulin observed here.

Cell culture and adipocyte differentiation

G45-crt/H11002 ES cells and the WT ES cell line (CGR8) were derived from J1 129/Sv mice. To generate the L7 ES cell line, J1 129/Sv ES cells were electroporated with a targeting vector containing the calreticulin gene with the loxP site inserted in introns 1 and 2 (Fig. S1 A) and maintained on mitomycin C-treated G418-resistant mouse embryonic fibroblast feeder cells (Mesaeli et al., 1999). Recombinant clones were selected with 0.2 mg/ml G418 and 2 mM gancyclovir. Several hundred colonies were picked after 10 d in selection medium and expanded. The L7 clone was selected based on Southern blot analysis and Western blot analysis with anticalreticulin antibodies (Mesaeli et al., 1999). Cre recombinase with additional mutant estrogen receptor ligand-binding domains (Cre-ER and MerCreMer) was used to excise exons 2–4 from the calreticulin gene (Fig. S1 A). In brief, L7 ES cells were stably transfected with Cre recombinase mutant expression vector (PANKWPE) in a gift from J.D. Molkentin, University of Cincinnati, Cincinnati, OH) to generate the L7-Cre cell line. To generate L7crt−/−, 10 μM tamoxifen was added to promote nuclear translocation. Induced expression of Cre recombinase. L7crt−/− contained the calreticulin gene with interrupted reading frames of the protein (Fig. 1 C). Calreticulin-deficient PRE-RXRA and PRE-RXRA expressing N+P and P+C domains of CRT were stably transfected into L7 ES cells by hanging drop method. We also showed that the initial process that associates calreticulin with the activity of the PPARγ2 transcriptional activation of the calreticulin gene involves a direct interaction of PPARγ with the C/EBPα transcriptional activator of the calreticulin gene, a result of its direct interaction with the calreticulin promoter. Thus, PPARγ can up-regulate calreticulin, and, conversely, calreticulin can inhibit its activity. We also found a direct relationship between calreticulin and PPARγ2 expression upon induction of adipogenesis with RA. RA induces the expression of calreticulin but reduces the expression of PPARγ2. This supports the notion of a hierarchical process in which transcriptional activation of the calreticulin gene by PPARγ is the early event followed by calreticulin modulation of PPARγ transcriptional activity. These data provide evidence for a previously unrecognized negative feedback loop whereby PPARγ regulates the expression of calreticulin, and calreticulin modulates PPARγ2 activity and expression. This is likely one important mechanism whereby calreticulin and ER Ca2+ homeostasis regulate adipogenesis.

In conclusion, for the first time, we show an essential role for organellar Ca2+ in adipogenic regulation. The presence of calreticulin inhibits adipogenesis through its effects on Ca2+ homeostasis, causing the indirect regulation of crucial pathways affecting adipogenesis, such as the calcineurin and CaMKII pathways. Although the CaMKII pathway is important for adipogenic differentiation, the calcineurin pathway may be involved in other choices of fate of ES cells. Finally, we show that the expression of calreticulin is tightly regulated during adipogenesis, and any modification of this expression influences adipogenesis such that aberrant calreticulin expression may lead to a variety of cellular pathologies, including obesity and diabetes.
Reporter gene assay

3T3-NIH cells were cotransfected with reporter plasmids containing the calreticulin promoter, deletion of the calreticulin promoter, or the calreticulin promoter with mutations of PPRE1 or PPRE2 (pLCO, pL1, pL2, pLCm1, and pLCm2) (PPARα, PPARγ, and RXRα expression vectors. pL1 and pL2 plasmids encod the luciferase reporter gene under the control of 1.2 kb calreticulin promoter, respectively (Waser et al., 1997). pLCO encoded the luciferase reporter gene under control of the 2.1 kb calreticulin promoter (Waser et al., 1997). To generate pLCm1 and pLCm2 plasmids, site-directed mutagenesis of PPRE1 and PPRE2 of the calreticulin promoter, respectively, was performed using the QuikChange Site-Directed Mutagenesis kit (Stratagene). Specifically, PPRE1 (AGGTCTAGAGGACA) was mutated to AGGcAGGcAGcA, whereas PPRE2 (TGCCCTGACGTcC) was mutated to ccGAGctGcCccC (lowercase letters are mutated nucleotides). After 48 h, cells were harvested in a lysis buffer containing 100 mM Tris, pH 7.8, 0.5% NP-40, and 0.5 mM DTT. Luciferase and β-galactosidase activity were measured as described previously (Waser et al., 1997).

Inhibitor studies

At the floating stage (days 3–5 of differentiation), EBs were incubated with KN-62 CaMK inhibitor or its inactive analogue (KN-93; Hidaka and Kobayashi, 1994) at concentrations of 10 μM for 2 h during the 3 d of EB flotation stage. The optimal inhibitory concentrations of KN-62 and KN-93 were determined to be in the range of 10 to 15 μM. Under these conditions, the drugs had no effect on cell survival/proliferation. For inhibition of calcineurin, SP-101431-prediproteins were incubated with 1 μg/ml cyclosporin A. The cells were then allowed to differentiate for an additional 15 d and were harvested for Western blot analysis, RNA isolation, or staining with oil red O.

Ca
2+
 studies and measurements

The 45Ca2+ measurements as well as [Ca2+]i measurements using the Ca2+-sensitive fluorescent dye fura-2-AM were performed as previously described in detail by Mery et al. (1996). The ionomycin and BAPTA-AM regimen was performed as previously described by Li et al. (2002) and Greyl et al. (2005) with the following modifications: to measure functional output, three consecutive pulse treatments of ionomycin or BAPTA-AM. To chelate cytoplasmic Ca2+, the EBs were incubated with 50 mM BAPTA-AM for 30 min.

To increase cytoplasmic Ca2+, the EBs were incubated with 1 μg/ml ionomycin in the same manner. A significant change in [Ca2+]i was obtained with three pulse treatments of ionomycin as previously described by Mery et al. (1996). Each parameter was quantified by densitometry, and data are expressed as the mean ± SEM. Western blot analysis, RNA isolation, and staining with oil red O.

SDS-PAGE and Western blot analysis

Cells were harvested in a lysis buffer containing 50 mM Tris-HCl, pH 8.0, 120 mM NaCl, 1 mM EDTA, 0.5% NP-40, and 2.5% glycerol. Protein concentration was determined by the method of Bradford (Bradford, 1976). Protein samples (10 μg per lane) were separated by SDS-PAGE and transferred to nitrocellulose membrane (Nakamura et al., 2001). Western blot analysis was performed with the following antibodies: anti-PPARγ2 (Sigma-Aldrich and Santa Cruz Biotechnology, Inc.) at 1:1,000 dilution; anticalreticulin (Opas et al., 1991) at 1:300 dilution; anti-C/EBPα (Santa Cruz Biotechnology, Inc.) at 1:1,000 dilution: anti-glyceroldehyde 3-phosphate dehydrogenase (GAPDH; Labfrontiers) at 1:5,000 dilution; anti-β-actin (Affinity BioReagents) at 1:1,000 dilution; anti-β-catenin (Santa Cruz Biotechnology, Inc.) at 1:1,000 dilution; anti-calmodulin (Affinity BioReagents) at 1:1,000 dilution; and anti-CREB pSer133 (Sigma-Aldrich) at 1:1,000 dilution. All secondary antibodies were horseradish peroxidase conjugated (Jackson Immunochemicals) and were used at 1:10,000 dilution. Immunoreactive bands were detected with a chemiluminescence ECL Western blotting system (GE Healthcare). Western blots were normalized by using anti-GAPDH antibodies. Relative mRNA levels were normalized to the housekeeping gene L32. Bands were quantified using ImageJ software (National Institutes of Health).

RNA preparation and RT-PCR analysis

Total RNA was isolated from cells grown in 10-cm tissue culture dishes using TRIzol reagent (Invitrogen) according to the manufacturer’s instructions. 1 μg RNA was used for synthesis of cDNA followed by RT-PCR using Superscript II (Invitrogen) according to the manufacturer’s protocol. The following primers were used for PCR analysis: for PPARα, forward primer 5’-ATCGGAATGCACACATACACC-3’ and reverse primer 5’-TGGTCGTTAGATGTCCGTATG3’; for C/EBPα, reverse primer 5’-CCGAGGACGATAAAGC-3’ and forward primer 5’-GCGGTCTATGTGCTAGTCA-3’; for PPARγ, reverse primer 5’-CATACGGACATGGGAGGAT’ and forward primer 5’-TCGACTTTCCATACCACTC-3’; and for L32, reverse primer 5’-ATGGCTGGCCCTTGGCCTC-3’ and forward primer 5’-ATCTCTCTCTGTCCGTAAGC-3’. PCR products were separated in 1.5% agarose gel. The mRNA levels were normalized using L32 as the housekeeping gene, and relative mRNA levels were quantified using ImageJ software.

Oil red O staining

Before staining with oil red O, cells were washed twice with PBS, fixed with 10% formaldehyde for 15 min at room temperature, and washed twice with distilled water and once with 70% isopropanol. Next, cells were stained for 1 h at room temperature with filtered oil red O at a ratio of 60% oil red O stock solution (0.5% wt/vol in isopropanol) to 40% distilled water. The cells were washed twice with distilled water, twice with PBS, and examined under a light microscope. An invertebrate (Diaphot; Nikon) equipped with a 10/0.25 DL dry plan Apochromatic objective (Nikon) was used for imaging at room temperature. A camera (Coolpix 4500; Nikon) was used for image acquisition. For quantitative analysis, oil red O was extracted with 5 ml isopropanol for 2 min, and optical density of each sample was determined at 540 nm.

EMSA

Full-length RBXs and PPARs as well as control proteins were synthesized using a coupled transcription and translation reticulocyte system (Promega; Guo et al., 2001). Double-stranded oligonucleotides corresponding to PPAR site 1 (PPRE1) and PPAR site 2 (PPRE2) were end labeled with [32P]ATP (GE Healthcare) and performed as described previously

Calcineurin activity assay

Calcineurin activity assay was performed as previously described (Fruman et al., 1992). In brief, a peptide corresponding to the regulatory domain of protein kinase A (Sigma-Aldrich) was used as the substrate in an in vitro dephosphorylation assay (R1 peptide). 1.0 x 106 cells were lysed in 30 ml hypotonic lysis buffer containing 50 mM Tris, pH 7.5, 0.1 mM EGTA, 1 mM EDTA, 250 mM DTT, and protease inhibitors. 20 ml of lysate was added to 5 mM γ[32P]-labeled R1 peptide. The reaction was performed for 20 min at 30°C in the presence of 0.5 mM okadaic acid with a total reaction volume of 60 ml. The released phosphate was used to activate calcineurin and was expressed as picomoles of phosphate released per milligrams of total protein.

Immunofluorescence and Nile red staining

Cells on coverslips were fixed in 3.7% formaldehyde in PBS for 10 min. After washing (three times for 5 min) in PBS, the cells were permeabilized with 0.1% Triton X-100 in buffer containing 100 mM NaCl, 0.5% Triton X-100, 0.5% NP-40, 0.1% BSA, 50 mM Tris, pH 7.5, 1 mM EGTA, and 4% (wt/vol) polyethylene glycol 8000 for 2 min, washed three times for 5 min in PBS, and incubated with goat polyclonal anti-PPAR-α antibody (diluted 1:50 in PBS; Santa Cruz Biotechnology, Inc.) for 30 min at room temperature. After washing three times for 5 min in PBS, the cells were incubated with the secondary antibody for 30 min at room temperature. The secondary antibody was FITC-conjugated donkey anti-goat IgG(H+L) diluted 1:50 in PBS. The cells were then incubated with 0.2 mM

![Image](12 January 2015)
ribonuclease A (Sigma-Aldrich) for 2 h at room temperature to digest RNA and washed in PBS (three times for 5 min) followed by incubation with 1 μl/ml propidium iodide in PBS for 30 min to identify nuclei. For Nile red staining, the dye stock solution of 0.5 mg/ml in acetone was diluted in a glycerol/PBS mixture (0.05 μl of Nile red stock solution in 1 ml of 3:1 glycerol/PBS). Cells were fixed and permeabilized as for immunofluorescence and incubated with Nile red working solution for 10 min. After the final wash (three times for 5 min in PBS), the slides were mounted in fluorescent mounting medium (to prevent photobleaching; Dako). A confocal fluorescence microscope (MRC 600; Bio-Rad Laboratories) equipped with a 60/1.40 plan Apochromatic oil immersion objective (Nikon) and a krypton/argon laser was used for fluorescence imaging at room temperature. COMOS software (Bio-Rad Laboratories) was used for image acquisition.

Statistical analysis

Differences between mean values for different treatments were calculated using analysis of variance or two-tailed unpaired t test (where applicable) and were considered to be significant at P < 0.05 and P < 0.01.

Online supplemental material

Fig. S1 shows genomic configuration of the calreticulin gene. Fig. S2 shows nucleotide sequence of the calreticulin promoter. Online supplemental material is available at http://www.jcb.org/cgi/content/full/jcb.200712078/DC1.

The superb technical help of Ewa Dziak is greatly appreciated. We thank Dr. L. Guo for generating the targeting vector with the calreticulin gene flanked by loxp and thank R. Rachubinski and J. Molkentin for plasmid DNA.

M. Opas is a member of the Heart and Stroke/Richard Lewar Centre of Excellence. This work was supported by grants from the Canadian Institutes of Health Research (CIHR; 36384) and the Heart and Stroke Foundation of Ontario (T6181) to M. Opas and CIHR grants 15415 and 53050 to M. Michalak.

Submitted: 14 December 2007
Accepted: 16 June 2008

References

