Sphingomyelin synthase-related protein SMSr controls ceramide homeostasis in the ER

Ana M. Vacaru,1 Fikadu G. Tafesse,1 Philipp Ternes,1 Vangelis Kondylis,3 Martin Hermansson,4 Jos F.H.M. Brouwers,2 Pentti Somerharju,4 Catherine Rabouille,3 and Joost C.M. Holthuis1

Ceramides are central intermediates of sphingolipid metabolism with critical functions in cell organization and survival. They are synthesized on the cytosolic surface of the endoplasmic reticulum (ER) and transported by ceramide transfer protein to the Golgi for conversion to sphingomyelin (SM) by SM synthase SMS1. In this study, we report the identification of an SMS1-related (SMSr) enzyme, which catalyses the synthesis of the SM analogue ceramide phosphoethanolamine (CPE) in the ER lumen. Strikingly, SMSr produces only trace amounts of CPE, i.e., 300-fold less than SMS1-derived SM. Nevertheless, blocking its catalytic activity causes a substantial rise in ER ceramide levels and a structural collapse of the early secretory pathway. We find that the latter phenotype is not caused by depletion of CPE but rather a consequence of ceramide accumulation in the ER. Our results establish SMSr as a key regulator of ceramide homeostasis that seems to operate as a sensor rather than a converter of ceramides in the ER.

Introduction

Sphingolipids are vital components of cellular membranes in organisms ranging from mammals to yeast. Besides providing a structural framework for plasma membrane (PM) organization, sphingolipids are dynamic regulators of a wide range of cellular processes. Sphingoid long-chain bases (LCBs), ceramides, and other intermediates of sphingolipid metabolism act as signaling molecules in the regulation of cell growth, death, migration, and membrane trafficking (Spiegel and Milstien, 2003; Hannun and Obeid, 2008). Notably, a sensitive balance between phosphorylated LCBs and ceramides, referred to as the LCBP/ceramide rheostat, appears critical for normal cell growth and lifespan (Mandala et al., 1998; Kobayashi and Nagiec, 2003). Moreover, sphingolipids form gradients along the secretory pathway that may affect protein sorting through hydrophobic matching of membrane spans (Bretscher and Munro, 1993; Holthuis et al., 2001; Patterson et al., 2008).

Given their impact on cell organization and survival, the local concentration of sphingolipids and their metabolic intermediates must be tightly controlled. Although the mechanisms that regulate membrane sterol concentrations are well established (Goldstein et al., 2006), little is known about the mechanisms controlling sphingolipid homeostasis. As ceramides constitute the backbone of all sphingolipids and directly participate in cellular life and death decisions (Morales et al., 2007), controlling their local concentration is critical. Ceramides can be generated by the breakdown of sphingomyelin (SM) through SMases at the PM (Andrieu-Abadie and Levade, 2002) or synthesized de novo by N-acylation of LCBs on the cytosolic surface of the ER (Mandon et al., 1992; Hirschberg et al., 1993). The latter...
reaction is controlled by components of TORC2 (target of rapamycin complex 2) presumably through phosphorylation of the ceramide synthase (Aronova et al., 2008).

In mammalian cells, the bulk of newly synthesized ceramides is converted to SM in the lumen of the Golgi (Tafesse et al., 2006). Efficient delivery of ER-derived ceramides to the site of SM production requires a cytosolic ceramide transfer protein (CERT; Hanada et al., 2003). Besides a START domain that binds ceramide, CERT contains an FFAT motif for interaction with the ER membrane and a pleckstrin homology domain targeting the Golgi. CERT is phosphorylated at a serine repeat motif, which down-regulates its ceramide transport function. Loss of SM and cholesterol from cells causes dephosphorylation of the motif, resulting in CERT activation (Kumagai et al., 2007). Thus, the local concentration of ceramides in cells is controlled by an intricate network of lipid-metabolizing enzymes, transfer proteins, kinases, and phosphatas.

SM production is mediated by a phosphatidylcholine (PC)/ceramide cholinephosphotransferase or SM synthase (SMS). Mammalian cells contain two SMS isofoms, SMS1 in the Golgi and SMS2 at the PM (Huitema et al., 2004). In addition, the mammalian genome encodes a third SMS-related (SMSr) protein of unknown function with homologues in nematodes and insects like *Drosophila melanogaster* (Fig. 1 A). *Drosophila* does not synthesize SM but produces the SM analogue ceramide phosphoethanolamine (CPE) as a major membrane constituent (Rao et al., 2007). CPE production also occurs in mammals and is catalyzed by a phosphatidylcholine/ceramide phosphotransferase or CPE synthase (PC/SMalgat et al., 1986, 1987). The identity of the responsible enzyme is not known. Production of SM and CPE involves a similar reaction chemistry (Malga et al., 1986). Because SMS1, SMS2, and SMSr are structurally related and share two highly conserved sequence motifs with putative active site residues (Fig. 1 B; Huitema et al., 2004; Tafesse et al., 2006), SMSr is a prime candidate for the elusive CPEs.

In this study, we show that SMSr displays CPEs activity and, contrary to SMS1 and 2, localizes to the ER. However, we find that SMSr produces only trace amounts of CPE and that bulk production of CPE in insect cells is mediated by a different enzyme. Unexpectedly, blocking SMSr activity causes a marked increase of ceramide levels in the ER. This is accompanied by a fragmentation of ER exit sites and a structural collapse of the Golgi. These morphological aberrations are not caused by a lack of CPE but rather a consequence of the ceramide accumulation in the ER. We propose that SMSr is a CPE with dual activity as ceramide sensor to control ceramide homeostasis in the ER and that the latter process is critical for the integrity of the early secretory pathway.

Results

SMSr proteins display CPEs activity

To test whether SMSr proteins catalyze CPE production, human SMSr (hSMSr) and *Drosophila* SMSr (dSMSr) were expressed in budding yeast, an organism lacking endogenous CPEs activity. SMSr-expressing cells were lysed and incubated with fluorescent C2-NBD–ceramide (NBD-Cer). TLC analysis of the reaction mixtures showed the presence of an NBD-labeled product with a retention factor value distinct from that of NBD–ceramide phosphoinositol and NBD-SM. The product was missing in reactions performed with control (empty vector) cells (Fig. 1 C). Liquid chromatography (LC) mass spectrometry (MS/MS) analysis identified the product as NBD-CPE (unpublished data), suggesting that SMSr proteins can synthesize CPE.

To determine whether SMSr proteins recognize natural ceramides as substrates for CPE production, a yeast strain was used in which the endogenous enzymes for ceramide production were replaced by mouse ceramide synthase CerS5 (Cerantola et al., 2007). As the ceramides produced in this strain structurally resemble those found in animal cells, they were expected to be suitable substrates for CPE biosynthesis. LC/MS/MS analyses revealed the presence of several molecular species of CPE in lipid extracts of both hSMSr- and dSMSr-expressing strains (Fig. 1 D). The extracts were devoid of SM. No CPE was detectable in control cells. Together, these results demonstrate that SMSr proteins function as CPEs.

SMSr represents a major CPEs activity in mammalian cells

To investigate whether SMSr corresponds to the CPEs activity previously described in mammalian cells (Malga et al., 1986, 1987), lysates of HeLa cells in which hSMSr was overexpressed or depleted by RNAi were analyzed for CPEs activity. Incubation of control cell lysates with NBD-Cer yielded three fluorescent products, corresponding to NBD-glucosylceramide (GlcCer), NBD-SM, and NBD-CPE (Fig. 2 A, left lane). Although formation of NBD-CPE was stimulated by addition of PE, addition of either PC or CDP-ethanolamine had no effect, suggesting that PE is the headgroup donor in the CPEs reaction (Fig. 2 B; Fig. S1; and see Fig. 4 E). Heterologous expression of V5-tagged hSMSr led to a sixfold increase in CPEs activity, leaving SMS activity unaffected (Fig. 2 A and C). Conversely, CPEs activity dropped >50% after depletion of hSMSr by RNAi (Fig. 2 D). This shows that hSMSr represents a major CPEs activity in HeLa cells.

To determine the contribution of SMSr to CPE biosynthesis in vivo, endogenous CPE production levels were monitored by metabolic labeling of various cell lines. Labeling human colon carcinoma Caco-2, liver carcinoma HepG2, or HeLa cells for 48 h with [14C]ethanolamine yielded only trace amounts of radiolabeled CPE (Fig. 2 F). The same was true when HeLa or CHO-K1 cells were labeled with [3H]phosphosine (Fig. 2 G). In contrast, labeling *Drosophila* S2 cells with [14C]ethanolamine showed that the CPE production level in these cells is much higher (Fig. 2 F, right). Indeed, MS analyses revealed that although S2 cells contain a substantial amount of CPE (15.3 ± 1.1 mol% of total phospholipid; n = 3), the CPE levels in HeLa or CHO-K1 cells are exceedingly low (∼0.03 mol%, i.e., 300-fold lower than SM; see Fig. 5 A).
was analyzed in HeLa cells by immunofluorescence microscopy. hSMSr-V5 gave a reticular and nuclear envelope staining pattern and colocalized with the ER marker protein disulfide isomerase (Fig. 2 E and Fig. S2 A). The ER localization of hSMSr does not explain why mammalian cells contain only trace amounts of CPE, as the substrates for CPE synthesis, PE, and ceramide are made in the ER.

We tested whether these substrates have limited access to the enzyme’s active site. SMSr and SMS1 share a common transmembrane domain organization with the active site facing the exoplasmic leaflet (Fig. 1 B; Huitema et al., 2004). SMSr-catalyzed CPE production would therefore occur in the ER lumen. As ceramide is synthesized on the cytosolic surface of the ER (Mandon et al., 1992; Hirschberg et al., 1993), it could be scavenged by CERT before being able to flip to the site of CPE production. To test this, we used CHO-K1–derived LY-A mutant cells, which are defective in CERT-mediated ceramide transport (Hanada et al., 2003). As shown in Fig. 2 G, [3H]sphingosine labeling of CHO-K1 and LY-A cells yielded similar levels of 3H-CPE, indicating that the low CPE content of mammalian cells is unlikely caused by scavenging of ceramides from the site of CPE production.

Another explanation for the low CPE content could be the presence of an inhibitory factor or environment in the ER. We found that removal of the N-terminal sterile α motif (SAM) domain of hSMSr caused its redistribution from the ER to the Golgi (Fig. 2 E and Fig. S2 B) but did not affect its enzymatic activity (see Fig. 4 A). However, metabolic labeling of HeLa cells expressing hSMSr or dSMSr or transfected with empty vector (control). White line indicates that intervening lanes have been spliced out. (D) Yeast strains expressing hSMSr or dSMSr produce CPE in vivo. Different molecular species of CPE were detected by electrospray LC/MS/MS (neutral loss of 141) after alkaline hydrolysis of glycerolipids. No CPE was detected in lipid extracts of control (untransfected) yeast.

was analyzed in HeLa cells by immunofluorescence microscopy. hSMSr-V5 gave a reticular and nuclear envelope staining pattern and colocalized with the ER marker protein disulfide isomerase (Fig. 2 E and Fig. S2 A). The ER localization of hSMSr does not explain why mammalian cells contain only trace amounts of CPE, as the substrates for CPE synthesis, PE, and ceramide are made in the ER.

We tested whether these substrates have limited access to the enzyme’s active site. SMSr and SMS1 share a common transmembrane domain organization with the active site facing the exoplasmic leaflet (Fig. 1 B; Huitema et al., 2004). SMSr-catalyzed CPE production would therefore occur in the ER lumen. As ceramide is synthesized on the cytosolic surface of the ER (Mandon et al., 1992; Hirschberg et al., 1993), it could be scavenged by CERT before being able to flip to the site of CPE production. To test this, we used CHO-K1–derived LY-A mutant cells, which are defective in CERT-mediated ceramide transport (Hanada et al., 2003). As shown in Fig. 2 G, [3H]sphingosine labeling of CHO-K1 and LY-A cells yielded similar levels of 3H-CPE, indicating that the low CPE content of mammalian cells is unlikely caused by scavenging of ceramides from the site of CPE production.

Another explanation for the low CPE content could be the presence of an inhibitory factor or environment in the ER. We found that removal of the N-terminal sterile α motif (SAM) domain of hSMSr caused its redistribution from the ER to the Golgi (Fig. 2 E and Fig. S2 B) but did not affect its enzymatic activity (see Fig. 4 A). However, metabolic labeling of HeLa cells expressing hSMSr or dSMSr or transfected with empty vector (control). White line indicates that intervening lanes have been spliced out. (D) Yeast strains expressing hSMSr or dSMSr produce CPE in vivo. Different molecular species of CPE were detected by electrospray LC/MS/MS (neutral loss of 141) after alkaline hydrolysis of glycerolipids. No CPE was detected in lipid extracts of control (untransfected) yeast.

was analyzed in HeLa cells by immunofluorescence microscopy. hSMSr-V5 gave a reticular and nuclear envelope staining pattern and colocalized with the ER marker protein disulfide isomerase (Fig. 2 E and Fig. S2 A). The ER localization of hSMSr does not explain why mammalian cells contain only trace amounts of CPE, as the substrates for CPE synthesis, PE, and ceramide are made in the ER.

We tested whether these substrates have limited access to the enzyme’s active site. SMSr and SMS1 share a common transmembrane domain organization with the active site facing the exoplasmic leaflet (Fig. 1 B; Huitema et al., 2004). SMSr-catalyzed CPE production would therefore occur in the ER lumen. As ceramide is synthesized on the cytosolic surface of the ER (Mandon et al., 1992; Hirschberg et al., 1993), it could be scavenged by CERT before being able to flip to the site of CPE production. To test this, we used CHO-K1–derived LY-A mutant cells, which are defective in CERT-mediated ceramide transport (Hanada et al., 2003). As shown in Fig. 2 G, [3H]sphingosine labeling of CHO-K1 and LY-A cells yielded similar levels of 3H-CPE, indicating that the low CPE content of mammalian cells is unlikely caused by scavenging of ceramides from the site of CPE production.

Another explanation for the low CPE content could be the presence of an inhibitory factor or environment in the ER. We found that removal of the N-terminal sterile α motif (SAM) domain of hSMSr caused its redistribution from the ER to the Golgi (Fig. 2 E and Fig. S2 B) but did not affect its enzymatic activity (see Fig. 4 A). However, metabolic labeling of HeLa cells expressing hSMSr or dSMSr or transfected with empty vector (control). White line indicates that intervening lanes have been spliced out. (D) Yeast strains expressing hSMSr or dSMSr produce CPE in vivo. Different molecular species of CPE were detected by electrospray LC/MS/MS (neutral loss of 141) after alkaline hydrolysis of glycerolipids. No CPE was detected in lipid extracts of control (untransfected) yeast.
to SM production, HeLa cells were metabolically labeled with \(\text{D}_2 \)-ethanolamine and \(\text{D}_2 \)-choline simultaneously. MS/MS analysis showed that the \(\text{D}_2/\text{D}_0 \) ratio of SM after 24-h labeling was \(\sim 1:100 \), indicating that headgroup transfer from PC is the major pathway of SM biosynthesis. Moreover, the \(\text{D}_2 \)-labeled SM pool most likely originated from headgroup transfer of \(\text{D}_2 \)-labeled PC, as this pool was reduced by depletion of human SMS1 (unpublished data). Finally, pulse-chase experiments with \[^{14}C\]ethanolamine and \[^{14}C\]choline showed that the turnover rate of CPE in HeLa cells was similar to that of SM (unpublished data). Thus, the low CPE content of mammalian cells is unlikely the result of CPE being a short-lived metabolic intermediate.

Together, these results suggest that SMSr proteins are intrinsically unable to produce bulk amounts of CPE. This is consistent with our finding that CPE levels in SMSr-expressing yeast strains are invariably low (<0.5 mol% of total phosphosphingolipid). As bulk amounts of CPE are present in Drosophila,
we next addressed the contribution of dSMSr to CPE production in Drosophila S2 cells.

Bulk production of CPE in insect cells is independent of SMSr

We first analyzed the subcellular distribution of dSMSr in S2 cells by using an antibody that specifically cross reacted with dSMSr on immunoblots of S2 cell extracts (see Fig. 4 C). As the endogenous protein was hardly detectable by immunofluorescence microscopy, S2 cells were transfected with a Cu²⁺-inducible dSMSr construct, and expression of the protein was enhanced fivefold (as indicated by immunoblotting). dSMSr colocalized extensively with a GFP-tagged version of the ER marker PE N-methyltransferase (PEMT; PEMT-GFP) but not with the Golgi microtubule-associated protein dGMAP (Fig. 3, A and B). The ER residency of dSMSr was confirmed by quantitative immunoelectron microscopy (Fig. 3, C and D). As observed for hSMSr, removal of its SAM domain caused dSMSr to redistribute from the ER to the Golgi (Fig. S2, C–E), which is consistent with a fundamental role of SAM in ER retention of SMSr proteins.

We next investigated the contribution of dSMSr to CPE production in S2 cells. Incubation of S2 cell lysates with NBD-Cer led to formation of NBD-CPE (Fig. 4 A). NBD-CPE formation increased fivefold after overexpression of dSMSr. Mutation...
did not enhance NBD-CPE production in HeLa cell lysates (Fig. 4 E, bottom).

In sum, insect cells contain two distinct CPESs: a PE/ceramide ethanolamine phosphotransferase corresponding to dSMSr and a dSMSr-unrelated CDP-ethanolamine/ceramide ethanolamine phosphotransferase that is likely responsible for bulk production of CPE. Importantly, these findings confirm that SMSr proteins in general lack the ability to produce bulk amounts of CPE.

Blocking SMSr catalytic activity causes ceramide accumulation in the ER

Although SMSr produces only trace amounts of CPE, SMSr-depleted HeLa cells showed a fourfold increase in ceramide levels (from 0.31 ± 0.01 to 1.29 ± 0.15 mol%; n = 3). This was accompanied by a threefold increase in GlcCer levels (from 0.32 ± 0.03 to 0.86 ± 0.09 mol%; n = 3; Fig. 5 A). Depletion of SMS1 caused a very similar rise in ceramide and GlcCer levels. In the latter case, however, this can be fully explained by a block in SM production (Tafesse et al., 2007). In contrast, the amount of ceramide and GlcCer accumulating in SMSr-depleted HeLa...
cells is 50-fold higher than can be ascribed to a block in CPE production (Fig. 5 A). The rise in ceramides affected all major species (Fig. S3 A and Table S1), could also be detected by [14C]serine labeling, and was not accompanied by an increase in sphingosine levels (Fig. S3 C). Moreover, it also occurred in SMSr-depleted hamster CHO-K1 and Drosophila S2 cells, although in the latter case to a lesser extent (Fig. S3 B).

As SMSr resides in the ER, the ceramide accumulation in SMSr-depleted cells likely originates from this organelle. This was confirmed by subcellular fractionation, which showed that the ER of SMSr-depleted HeLa cells contains nearly 300% more ceramide than the ER of lamin A (LA)–depleted control cells (Fig. 5, B and C). To verify this also for S2 cells, we created an ER-resident form of hSMS1 and analyzed its ability to reduce ceramide levels in dSMSr-depleted S2 cells. Consistent with a role of SMSr-derived SAM in ER retention, an hSMS1 swap mutant carrying the SAM-containing cytosolic tail of hSMSr, hSMS1Nt, localized primarily to the ER (Fig. 5, D and E). hSMS1Nt retained its SMS activity, as its expression in S2 cells supported production of SM (Fig. 5 F). Expression of ER resident hSMS1Nt but not Golgi-associated hSMS1 prevented the accumulation of [14C]serine-labeled ceramides in dSMSr-depleted S2 cells (Fig. 5 G). Together, these results indicate that SMSr acts as a negative regulator of ceramide levels in the ER.

To investigate whether SMSr requires its catalytic activity to prevent ceramide accumulation, dSMSr-depleted S2 cells were transfected with wild type or an enzyme-dead version of hSMSr. Expression of wild-type hSMSr effectively reduced the ceramide pool in dSMSr-depleted S2 cells (Fig. 5 H). However, mutation of active site residue Asp348 to Glu was sufficient to abrogate this effect. Transfection of hSMSr-depleted HeLa cells with siRNA-resistant hSMSr or hSMSD348E yielded the same results (Fig. 5 H). Thus, even though SMSr produces only trace amounts of CPE, this appears essential to control the ceramide pool in the ER.

Loss of SMSr perturbs the organization of the early secretory pathway

Recent work revealed that CERT−/− mouse embryos accumulate ceramide in the ER and display a chronic state of ER stress characterized by vesiculation and engorgement of the ER and up-regulation of downstream components of the unfolded protein response pathway (Wang et al., 2009). Even though SMSr-depleted S2 and HeLa cells show a substantial rise in ER ceramide levels, they did not display any of the morphological (ER dilation and vesiculation) or biochemical (XBP-1 splicing, induction of CHOP/GADD153, and up-regulation of ER chaperones) features of ER stress (unpublished data). Instead, we found that the organization of ER exit sites and the Golgi complex was greatly perturbed.

Golgi stacks in S2 cells do not form a large Golgi ribbon capping the nucleus as in mammalian cells. Instead, they remain discrete in the cytoplasm and are found in close proximity to transitional ER (tER) sites, forming 17–25 tER–Golgi units (Kondylis and Rabouille, 2003). Brefeldin A treatment blocked PM delivery of Delta and caused its accumulation in the ER. In contrast, PM delivery of Delta was not significantly impaired in dSMSr-depleted S2 cells, suggesting that the fragmented tER–Golgi units in these cells are fully competent for anterograde transport (Fig. S5 A). Similar results were obtained in hSMSr-depleted HeLa cells using the well-established VSV-045G transport assay (Fig. S5, C and D). Moreover, SMSr depletion had no major impact on protein glycosylation (Fig. S5 E). Together, these findings indicate that SMSr proteins play a critical role in the acquisition of Golgi stack morphology without affecting the functional integrity of the organelle. This adds further evidence to the notion that transport of cargo to, through, and out of the Golgi complex does not require a fully developed organelle and can proceed under conditions in which the cisternal stacks are severely disorganized (Kondylis and Rabouille, 2003; Zolov and Lupashin, 2005).

Golgi fragmentation in SMSr-depleted cells is caused by ceramide accumulation in the ER

To test whether catalytic activity of SMSr is required to prevent Golgi fragmentation, we monitored the rescue of this phenotype by transfecting dSMSr-depleted S2 cells with wild-type or enzyme-dead hSMSr. Expression of wild-type hSMSr almost completely restored Golgi integrity. However, mutation of active site residue Asp348 to Glu was sufficient to abolish the rescuing effect (Fig. 7, A and C). These results completely parallel those obtained with hSMSr-depleted HeLa cells after transfection with siRNA-resistant hSMSr or hSMSD348E (Fig. 7, B and C).

One possible interpretation of these results is that the structural integrity of the early secretory pathway depends on the trace by the COPII subunit dSec23) was maintained, both structures had a fragmented, hazy appearance (Fig. 6 A; and Fig. S4, A–I). This effect was quantitative, as more than half of the depleted cells displayed a fragmented Golgi (Fig. 7 C). However, the global architecture of the ER was unaffected by the depletions.

At the ultrastructural level, Golgi morphology in dSMSr-depleted S2 cells was profoundly affected. Instead of showing the typical organization of stacked cisternae (Fig. 6, B and D), the Golgi was converted into many short tubular structures in the majority of the cells (Fig. 6, C, E, and F). These tubular clusters were mostly devoid of KDEL-containing proteins but were positive for dSec23 (Fig. 6, E and F), suggesting that they represent a mixture of Golgi and tER membranes.

hSMSr-depleted HeLa cells showed a very similar phenotype. The Golgi ribbon was completely fragmented in more than half of the cells as indicated by immunostaining against markers of medial (ManII–RFP) and trans-Golgi compartments (TGN46; Fig. 6 G; Fig. 7 C; Fig. S4, J–L). These results further strengthen the functional similarity between hSMSr and dSMSr. Moreover, the requirement of SMSr for Golgi integrity appears specific because the Golgi ribbon was unperturbed in hSMS1-depleted HeLa cells (Fig. 6 G).

We next tested whether fragmentation of the early secretory pathway could result in or be the result of inhibition of anterograde transport. To this end, we monitored the transport efficiency of the transmembrane protein Delta from the ER to the PM in S2 cells (Kondylis and Rabouille, 2003). Brefeldin A treatment blocked PM delivery of Delta and caused its accumulation in the ER. In contrast, PM delivery of Delta was not significantly impaired in dSMSr-depleted S2 cells, suggesting that the fragmented tER–Golgi units in these cells are fully competent for anterograde transport (Fig. 5 A). Similar results were obtained in hSMSr-depleted HeLa cells using the well-established VSV-045G transport assay (Fig. S5, C and D). Moreover, SMSr depletion had no major impact on protein glycosylation (Fig. S5 E). Together, these findings indicate that SMSr proteins play a critical role in the acquisition of Golgi stack morphology without affecting the functional integrity of the organelle. This adds further evidence to the notion that transport of cargo to, through, and out of the Golgi complex does not require a fully developed organelle and can proceed under conditions in which the cisternal stacks are severely disorganized (Kondylis and Rabouille, 2003; Zolov and Lupashin, 2005).
Figure 5. **SMSr-depleted cells accumulate ceramides in the ER.** (A) HeLa cells treated with si LA, si hSMSr, or siRNA-targeting hSMS1 (si hSMS1) for 3 d were subjected to lipid extraction. Lipid classes were quantified by MS/MS analyses and expressed in mole percent of total lipid analyzed. Data shown are representative of three independent experiments. (B) HeLa cells expressing hSMS1-V5 were subjected to subcellular fractionation, yielding a PNS and fractions enriched for mitochondria (mito)/Golgi, PM/early endosomes (EE), or ER. Equal amounts of protein from each fraction were analyzed by immunoblotting. Note that the ER fraction was virtually free of other organelles except for a minor contamination with PM (<10%). (C) MS/MS analysis of ceramide and PE levels in ER fractions prepared from HeLa cells treated with si LA or si hSMSr for 3 d. (D) HeLa cells transfected with hSMS1-V5 or an hSMS1 swap mutant carrying the N-terminal tail of hSMSr, hSMS1Nr-V5, were double labeled for V5 and cis-Golgi marker GM130. (E) S2 cells cotransfected with hSMS1-V5 or hSMS1Nr-V5 and ER marker PEMT-GFP were labeled for V5. The white box marks a cell captured from a different field. Note that hSMS1Nr-V5 localizes to the ER and nuclear envelope (D and E, arrows). (F) S2 cells transfected with hSMS1-V5 or hSMS1Nr-V5 were labeled with [14C]choline for 5 h and subjected to lipid extraction, TLC, and autoradiography. (G) dSMSr-depleted S2 cells were transfected with hSMS1-V5 or hSMS1Nr-V5 and labeled for 5 h with [14C]serine. Levels of radiolabeled ceramides were determined by TLC and autoradiography and expressed as a percent of mock-treated cells. (H) SMSr-depleted cells (S2/HeLa) were transfected with hSMSr-V5 or hSMSrD348E-V5 and labeled for 5 h with [14C]serine. Levels of radiolabeled ceramides were determined as in G. SMSr depletions were with ds dSMSr #2 (S2) or si hSMSr #2 (HeLa). Transfection of HeLa cells was with siRNA-resistant (res) SMSr constructs. Untransf, untransfected. Error bars: (G) SD, n = 3; (C and H) range, n = 2.
Figure 6. **SMSr depletion disrupts tER–Golgi units in insect and mammalian cells.** [A] S2 cells were treated for 7 d with ds GFP, ds dSMSr #1, or ds dSMSr #2 and double labeled for dSec23 (tER sites) and d120kd (Golgi stacks). Confocal projections of the merge are presented. The single channels are presented in Fig. S5 A. Bar, 5 µm. (B–F) S2 cells treated for 5 d with ds GFP (B and D) or dSMSr #2 (C, E, and F) were fixed and processed for immunoelectron microscopy. Ultrathin cryosections were visualized before (B and C) or after double labeling for dSec23 (15-nm gold) and KDEL (10-nm gold; D–F). Note that Golgi stacks in most dSMSr-depleted cells are converted to a cluster of short tubular profiles (arrowheads) in cytoplasmic regions normally occupied by tER–Golgi units (between brackets). These short tubules are positively labeled for Sec23, suggesting that they comprise membrane of both compartments. G, Golgi stack. (G) Mannosidase II-RFP–expressing HeLa cells were treated with si LA, si hSMSr #2, or hSMS1 for 3 d and labeled for TGN46 and DNA (DAPI). Confocal projections of the merge are presented. The single channels are presented in Fig. S5 (J–L). Bars: (A and G) 5 µm; (B–F) 200 nm.
Figure 7. Structural integrity of tER–Golgi units requires an enzyme-active form of SMSr. (A) S2 cells were treated with ds SMSr #2 and transfected with hSMSr-V5 or hSMSrD348E-V5. After 7 d, cells were double labeled for Golgi marker dGMAP and V5 to mark transfected cells. Confocal projections are presented. Note that cells expressing hSMSr (arrows) mostly show the typical wild-type Golgi organization of 17–25 large spots. In contrast, nontransfected cells or those expressing enzyme-dead hSMSr (arrowheads) typically have more numerous and smaller Golgi spots. (B) Mann II-RFP–expressing HeLa cells were treated with si hSMSr #2 and transfected with siRNA-resistant (res) hSMSr-V5 or hSMSrD348E-V5. After 3 d, cells were labeled for V5 to mark transfected cells. Confocal projections are presented. Note that cells expressing hSMSr-V5 contain an intact Golgi (arrows). In contrast, cells expressing enzyme-dead hSMSr still have fragmented Golgi (arrowheads). (C) Quantitation of the rescue of the Golgi fragmentation phenotype in SMSr-depleted cells (HeLa/S2) after transfection of wild-type or enzyme-dead SMSr. SMSr-depleted cells are compared with control cells (si LA or ds GFP treated), and
amounts of CPE produced by SMSr. Alternatively, as an enzyme-dead mutant of SMSr is unable to prevent ceramide accumulation in the ER (Fig. 5 H), fragmentation of the early secretory pathway in SMSr-depleted cells could be caused by the rise in ceramide levels in the ER. To distinguish between these possibilities, ER resident SMS hSMS1Nr was expressed in SMSr-depleted S2 or HeLa cells and analyzed for its ability to rescue Golgi fragmentation. Expression of hSMS1Nr partially restored Golgi integrity in both cell types (Fig. 7 D), indicating that acquisition of Golgi stack morphology is not strictly dependent on production of CPE. As expression of hSMS1Nr was effective in preventing ceramide accumulation in SMSr-depleted cells (Fig. 5 G), we asked whether blocking ceramide production or stimulating ceramide export from the ER would also suppress Golgi fragmentation. Treatment with ceramide synthesize inhibitor fumonisin B1 or overexpression of CERT partially but reproducibly restored Golgi integrity in both SMSr-depleted HeLa and S2 cells (Fig. 7 D). This indicates that the structural collapse of the early secretory pathway in SMSr-depleted cells is the result of ceramide accumulation in the ER. Thus, these results further support a primary role of SMSr in controlling ceramide homeostasis in the ER.

Discussion

SMSr proteins define an unconventional class of sphingolipid synthases

In this study, we show that SMSr, the most conserved member of the multigenic SMS family, catalyzes production of the SM analogue CPE. SMSr likely accounts for the CPES activity described two decades ago in rat brain and liver microsomes (Malagt et al., 1986, 1987). Common features between these enzymes include the use of PE as headgroup donor, their ER residency, and a membrane topology in which the active site is facing the ER lumen. Although mammalian cells contain a readily detectable CPES activity, their CPE content is very low (i.e., 300-fold lower than SM). This enigma is neither caused by a limited supply of substrates to the enzyme’s active site nor by CPE being a short-lived metabolic intermediate. Instead, we find that SMSr intrinsically lacks the ability to synthesize significant amounts of CPE. This is radically different from closely related SMS1, which catalyses bulk production of SM (Tafesse et al., 2007).

What makes SMSr so different from SMS1? SMS1 utilizes a lipid phosphate phosphatase–type reaction mechanism, which involves a single lipid-binding site and proceeds via transfer of phosphoholcholine from PC to a conserved histidine in the enzyme’s active site (Huitema et al., 2004; Tafesse et al., 2006). When DAG is replaced by ceramide, the phosphoholcholine headgroup is transferred onto ceramide to form SM. The latter is then released from the active site to allow another round of catalysis. Mutational analysis of putative active site residues indicates that SMSr-mediated CPE production involves a very similar reaction mechanism. However, although SM readily dissociates from SMS1, we propose that CPE remains bound to the active site of SMSr, thus blocking a further round of catalysis. This could be the result of several factors. First, SMSr might have a higher affinity for CPE than for PE. Second, dissociation of SM from SMS1 might be facilitated by its preferential interaction with cholesterol. Contrary to SM, CPE lacks this interaction (Terova et al., 2005). Thus, in the presence of cholesterol, SM production might be thermodynamically more favorable than CPE production.

The notion that SMSr is unable to produce significant amounts of CPE is further substantiated by our finding that bulk production of CPE in insects is mediated by a different enzyme. This second CPES uses CDP-ethanolamine instead of PE as headgroup donor, which is analogous to the ethanolamine phosphotransferases of the Kennedy pathway (Vance, 2008). This implies that, contrary to SM synthesis in mammals, bulk production of CPE occurs in the cytosolic leaflet of the membrane. As insects require CERT for efficient CPE production (Rao et al., 2007), the second enzyme likely resides in the Golgi.

SMSr qualifies for a ceramide sensor in the ER

Although SMSr is a poor CPES, we find that the enzyme has a major impact on ceramide levels in the ER. Indeed, SMSr-depleted mammalian cells display a rise in ceramide levels that is one order of magnitude too high to be explained by a reduced ceramide consumption for CPE biosynthesis. SMSr-depleted insect cells and SMSr-null mutants in Caenorhabditis elegans also show a marked increase in ceramide levels (this study; unpublished data). Strikingly, a single point mutation in the active site of SMSr proved sufficient to induce ceramide accumulation. This shows that SMSr must be catalytically active to keep ER ceramide levels low, even if the enzyme lacks the ability to consume significant amounts of ceramide. Together, these results establish SMSr as a novel regulator of ceramide homeostasis in the ER.

How does SMSr control ceramide levels in the ER? We anticipate that under normal conditions, only small amounts of ceramide will reach the enzyme’s active site. This is because ceramides synthesized on the cytosolic surface of the ER are continuously removed by CERT (Fig. 8 A). Consequently, only a minor fraction of SMSr enzymes will be trapped in a CPE-bound form. Yet when the rate of ceramide production exceeds ceramide removal by CERT, the pool of CPE-bound enzymes will expand. It is possible that CPE-bound SMSr adopts a conformation that relays a signal to inhibit ceramide biosynthesis and/or stimulate ceramide degradation (Fig. 8 B). Alternatively, SMSr-derived CPE might directly influence the activity of ceramide-metabolizing enzymes in the ER. Either feedback mechanism would ensure maintenance of ceramide homeostasis in the ER. Distinguishing between these possibilities will require reconstitution experiments with purified enzymes.
Collectively, our data suggest that SMSr is a CPES with a dual role as ceramide sensor to control ceramide homeostasis in the ER. As its active site faces the ER lumen, SMSr would only sense ceramides present in the exoplasmic leaflet, i.e., molecules that escaped CERT-mediated extraction at the cytosolic surface and flipped to the luminal side. Notably, this arrangement implies cooperativity between SMSr and CERT in keeping ER ceramide levels low. Thus, SMSr serves a biological role that is different from closely related SMS1 but analogous to the ensemble of membrane proteins that monitor sterol concentrations in the ER (Goldstein et al., 2006). In this respect, the SMS enzyme family displays an interesting parallel with the nutrient transporter family. Besides conventional transporters, the latter family also harbors transceptors that play a dual role as nutrient sensor because their conformational change during the transport process can trigger downstream signaling pathways (Holsbeeks et al., 2004).

Functional implications of SMSr-controlled ceramide homeostasis

Concurrent with the accumulation of ceramide in the ER, blocking SMSr activity causes a structural collapse of the early secretory pathway. The disruption of tER–Golgi organization completely parallels the rise in ER ceramide levels. Indeed, any condition that normalizes the ceramide concentration in the ER seems to restore Golgi stack morphology; i.e., the presence of enzymatically active SMSr, the consumption of ceramide by ER resident SMS, stimulation of ER export of ceramide by overexpression of CERT, or a block in ceramide production by ceramide synthase inhibitors. Conversely, blocking SM production to accumulate ceramides in the Golgi does not perturb its morphology.

How can an excess of ceramides in the ER affect Golgi organization? As the biogenesis of the Golgi is tightly linked to that of tER sites (Bevis et al., 2002), a disruption of tER sites likely contributes to the structural collapse of the Golgi. tER sites are thought to arise from patches of ER membrane proteins that have weak, cooperative affinity for one another (Bevis et al., 2002; Heinzer et al., 2008). These patches capture additional tER proteins until they grow large enough to produce COPII vesicles. A rise in ER ceramides may perturb the local physical environment required to stabilize patches of tER proteins. Alternatively, ceramides may affect tER site morphology by altering the membrane turnover of COPII components analogous to the situation in sterol-depleted cells (Runz et al., 2006). Moreover, ceramides serve as early mediators of apoptosis, an event accompanied by fragmentation of the Golgi complex. Apoptosis-induced Golgi fragmentation requires caspase 3–mediated cleavage of golgins, a family of coiled-coil proteins involved in maintenance of Golgi stack morphology (Lane et al., 2002). Interestingly, SMSr-depleted HeLa cells display hallmarks of apoptosis, including activation of caspase 3 (unpublished data). Whether blocking caspase activation prevents Golgi fragmentation in SMSr-deficient cells remains to be established.

A tight regulation of ceramide homeostasis in the ER likely has functional implications beyond sustaining the structural integrity of the early secretory pathway. Down-regulation of CERT sensitizes cancer cells to paclitaxel, suggesting that ER ceramides are integral to taxane-induced cell death (Swanton et al., 2007). Moreover, CERT−/− mouse embryos accumulate ceramide in the ER and display a chronic state of ER stress (Wang et al., 2009). As components of the unfolded protein response are up-regulated during animal development (Reimold et al., 2000; Iwakoshi et al., 2007), a defective transport of ceramide might potentiate ER stress in the embryo (Wang et al., 2009). Whether loss of SMSr sensitizes cells to ER stress–inducing conditions is currently under investigation.

The ER is a highly efficient lipid distribution system that is intimately associated with other organelles, including mitochondria (Levine and Rabouille, 2005). Ceramides have been implicated in mitochondria-induced apoptosis and may reach these organelles via contact sites with the ER (Siskind et al., 2008; Stiban et al., 2008; Wang et al., 2009). The present identification of SMSr as a key regulator of ceramide homeostasis in the ER provides novel opportunities to explore the role of ceramides in mitochondria-induced cell death and for modulating taxane effects on tumors.
Materials and methods

Chemicals
NBD-Cer was obtained from Invitrogen, NBD-SM, POPE (2-oleoyl-1-palmitoyl-sn-glycerol-3-phosphoethanolamine), and POPC (2-oleoyl-1-palmitoyl-sn-glycerol-3-phosphocholine) were obtained from Avanti Polar Lipids, Inc. NBD-CPE was provided by P. Devaux (Institut de Biologie Physico-chimique, Paris, France). 2-[3H]ethanolamine hydrochloride and 3-[3H]serine were purchased from Perbio Science. All other lipids and chemicals were obtained from Sigma-Aldrich.

Antibodies
The following antibodies were used: rabbit polyclonal anti-VA5 and mouse monoclonal anti-Flag (Sigma-Aldrich), mouse monoclonal anti-VA5 (Invitrogen), mouse monoclonal anti-VM130 (BD), mouse monoclonal anti-KDEL, rabbit polyclonal anti-calnexin and anti-GFP (Jackson ImmunoResearch Laboratories and Invitrogen, respectively), and Texas red or Alexa dyes were obtained from Jackson Immunoresearch. EEA1 (BD), rabbit polyclonal anti-dGMAP (Kondylis et al., 2007), rabbit polyclonal anti-PEMT (Nijmegen, Nijmegen, Netherlands), rabbit polyclonal antiprotein disulfide isomerase (provided by I. Broekman, Utrecht University, Utrecht, Netherlands), rabbit polyclonal anti-GFP (Invitrogen), mouse monoclonal anti-V5 (Invitrogen), and mouse monoclonal anti-Flag (Sigma-Aldrich).

DNA constructs
hSMSr, hSMS1, and dSMSr cDNAs were cloned into yeast expression vector pYES2.1/V5-His-TOPO and mammalian expression vector pdDNA3.1/V5-His-TOPO (Invitrogen) as described previously (Huttema et al., 2004). For expression studies in Drosophila S2 cells, dSMSr, hSMSr, and hSMS1 cDNAs were PCR amplified and ligated into the copper-inducible pMT/V5-His B vector (Invitrogen). Mutation of active site residues in dSMSr (H401A and D405E) and hSMSr (D348E) was performed using the megaparticle PCR method (Orr-Weaver et al., 1983). SAM-deficient mutants were obtained by truncation of the first 186 N-terminal residues in dSMSr or the first 68 N-terminal residues in hSMSr. An ER-resident hSMS1 swap mutant, hSMS1Nr, was created by truncation of the first 186 N-terminal residues in dSMSr or the first 68

Yeast culture
Yeast strain Lass5 (a−mannosidase II-RFP in pcDNA3.1 and 5-17-GAGCCGGATTTCCGACATC-3′) was transformed with pYES2.1 and pcDNA3.1 and grown in selective synthetic medium containing 2% (wt/vol) galactose and 50 mg/l myo-inositol. Yeast cultures were transformed with SMS/pMT/V5-HisB constructs on day 5 using Effectene. Expression of recombinant SMS protein was induced by adding 100 µm CuSO4, for 3 h followed by a 2-h chase in the presence of 150 µg/ml cycloheximide.

In vitro enzyme assays
100 ODs of yeast cells was lysed by bead bashing in 10 ml ice-cold reaction buffer (0.3 M sucrose, 15 mM KCl, 5 mM NaCl, 1 mM EDTA, 20 mM HepesKOH, pH 7.0) containing freshly added protease inhibitors. Hela and S2 cells were lysed in ice-cold reaction buffer by passing 20 times through a 26-G 0.75 needle. 200 µl postnuclear supernatant (PNS; 700 µl) was examined by SDS-PAGE and Western blotting on polyvinylidene difluoride membranes conjugated to FITC and Texas red or Alexa dyes were obtained from Jackson Immunoresearch Laboratories and Invitrogen, respectively.

Lipid MS
Lipid extraction was performed by bead bashing in CHCl3/MeOH/H2O (10/10/3 [vol/vol/vol]) or CHCl3/MeOH/25% NH4OH (50/25/6 [vol/vol/vol]; Figs. 1 and 2) or CHCl3, acetone/MEOH/acetic acid/H2O (50/20/10/5 [vol/vol/vol/vol]; Fig. 4). Glycerolipids were removed by mild alkaline hydrolysis in 0.5 M sodium methoxide in MeOH for 1 h at RT. The lipids were analyzed with a triple quadrapole mass spectrometer (PE Sciex API-365; Applied Biosystems). Positive ions were generated by a turbo ion spray ionization source operating at +5.5 kV ionization potential. N2 was used as drying gas at 350°C. The declustering potential (cone voltage) was set to 50 V, the collision energy to 36 V, the entrance potential to 10 V, and the focus potential to 160 V. The lipid molecular species and classes were quantified as described previously in Tafesse et al. (2007).

Metabolic labeling
S2 cells (2.5–5 × 106) were labeled in 0.5 ml complete Schneider's insect medium with 10 nM NBD-Cer, 1 µCi [14C]ethanolamine, 1 µCi [3H]choline, or 1 µCi [14C]serine at 27°C for the indicated time. Mammalian cells (10 cm dish; 50% confluency) were labeled in complete medium with 1 µCi [3H]ethanolamine or 1 µCi [3H]choline for the indicated time. Lipids were extracted in CHCl3/MEOH/10 mM acetic acid (1/4/4.0/0.2 [vol/vol/vol]) and processed according to Bligh and Dyer (1959). Half of the extract was subjected to mild alkaline hydrolysis. Radiolabeled lipids were analyzed by TLC in CHCl3/MEOH/25% NH4OH (50/25/5 [vol/vol/vol]; [14C]ethanolamine/choline), CHCl3/MEOH/2 M NH4OH (40/10/1 [vol/vol/vol]; [3H]serine), CHCl3/MEOH/0.2% CaCl2 (60/40/0.09 [vol/vol/vol]; [3H]choline), and [3H]phosphoglycerol, detected by exposure to imaging screens (BAS-MAX).
Fujifilm), scanned on a Personal Molecular Imager (Bio-Rad Laboratories), and quantified with Quantity One software.

Isolation of ER membranes

Hela cells were washed twice and harvested by scraping in ice-cold homogenization buffer (HB; 10 mM Hepes, pH 7.8, 1 mM EGTA, 25 mM KCl, 1 mM protease inhibitor cocktail, and 1 mM PMSF) supplemented with 0.25 M sucrose. Cells were pelleted by centrifugation at 400 g and gently disrupted by a dounce homogenizer in 11 mL HB at 4°C. The homogenate was centrifuged twice at 500 average g (gav, 5 min at 4°C) to generate a PNS. The PNS was centrifuged at 10,000 gav (10 min at 4°C) to pellet mitochondria. The postmitochondrial supernatant was loaded onto a 1 mL 68% (wt/wt) sucrose cushion (prepared in HB) and centrifuged at 100,000 gav (1 h) to obtain a crude microsomes. The microsomes were resuspended in 1 mL HB and loaded on top of a 25–60% (wt/wt) sucrose step gradient that was generated in HB using the following steps: 2 mL 25%, 2 mL 30%, 2 mL 37%, 2 mL 42%, and 1 mL 60%. After centrifugation at 100,000 gav (18 h at 4°C) in a rotor (SW41 Ti; Beckman Coulter), 20 × 0.6 mL fractions were collected from the top. PM and ER membranes peaked in fractions 7–9 and 17 and 18, respectively. Equal amounts of protein from the PNS, the crude mitochondrial membrane pellet, and the collected PM and ER membrane peaks were subjected to immunoblots analysis. This revealed that the collected ER membranes were virtually devoid of other organelles except for a minor contamination with PM (<1%).

Microscopy and image analysis

Cells were fixed in 4% paraformaldehyde/PBS, processed for immunofluorescence as described previously for S2 (Kondylis and Rabouille, 2003) and HeLa cells (Tafesse et al., 2007), and mounted in Vectashield medium containing DAPI (Vector Laboratories). Images were acquired at RT using a confocal microscope (LSM 510 Meta; Carl Zeiss, Inc.) or with a confocal microscope (D-eclipse C1; Nikon) with 60× 1.40 NA Plan Apo oil objective (Nikon). The microtubules were stained with α-Tubulin (H-316; Sigma-Aldrich) with 100× 1.40 NA Plan Apo oil objective (Nikon). The fluorescences used were DAPI, λex = 360 nm and λem = 460 nm; FITC/ Alexa Fluor 488, λex = 488 nm and λem = 515 nm; Texas red/Alexa Fluor 568, λex = 568 nm and λem = 585 nm. Projections were obtained by collecting series of 0.4-μm sections that were acquired and combined using LSM software (Carl Zeiss, Inc.) or EZC1 software (Nikon). Images were further processed using Photoshop software (version 7.0.1; Adobe).

The TIR–Golgi fragmentation phenotype in S2 cells was assessed as described previously in Kondylis and Rabouille (2003). In brief, all cells from each projection were assigned to either one of two categories: cells with a wild-type Golgi morphology, which corresponds to 17–25 large, dGMAP, or d120kd-labeled spots, and cells with a fragmented Golgi morphology, corresponding to numerous smaller labeled spots. Results were expressed as a percentage of cells displaying a fragmented Golgi morphology, corresponding to numerous smaller labeled spots. The averages were derived from three independent experiments, each analyzing at least 400 (or ≥75 transfected) cells per condition. The statistical significance of all data obtained was assessed by two-tailed unpaired Student’s t tests. P ≤ 0.001 was considered significant and is indicated (Fig. 7, C and D).

Deltaxxx

Delta and VSV-045G transport assays

The Delta transport assay was performed using the cell line Delta-WTNd (Kondylis and Rabouille, 2003). In brief, S2 cells were treated with different dsRNA for the indicated time. The Delta protein was induced for 1 h with 1 mM CuSO4 and chased in the absence of CuSO4 for different time points. Subsequently, cells were fixed, immunostained, and Delta arrival at PM was monitored by immunofluorescence microscopy. For VSV045G transport assay, HeLa cells were treated with different siRNA constructs for 7 d, transfected with VSV-045G-GFP, kept at 39.5°C for 16 h, and chased at 32°C for different time points as indicated.

Online supplemental material

Fig. S1 shows the effect of externally added phospholipid on CPE production levels in lysates of normal and hSMS-overexpressing Hela cells. Fig. S2 shows that loss of the SAM domain causes a redistribution of SMSr from the ER to the Golgi. Fig. S3 shows that SMSr-depleted cells accumulate all major species of ceramide but no sphingosine. Fig. S4 shows the single channels of images presented in Fig. 6. Fig. S5 shows that anterograde protein transport to the PM is not impaired in SMSr-depleted cells. Table S1 shows a quantitative analysis of ceramide species in control, hSMSr-depleted, and hSMS1-depleted Hela cells. Online supplemental material is available at http://www.jcb.org/cgi/content/full/jcb.200903152/DC1.

We thank Kenneth Hanada, Sean Munro, Andreas Conzelmann, Philippe Devaux, Jairaj Acharya, and Moniša Olayioye for gifts of reagents and cell lines, Tarja Grundström, Elleke Bosma, and Martin Harteink for technical assistance, and our colleagues at the department of Membrane Enzymology for stimulating discussions and critical reading of the manuscript. A.M. Vaccar was supported by the European Union Framework V program [the Flippase Project], P. Ternes was supported by a Marie Curie Intra-European Fellowship and a European Molecular Biology Organization Long-Term Fellowship. K. Kondylis was supported by a Horizon Programme from National Regio-Organo Genomics (grant 05071-029), and J.C.M. Holthuis was supported by grants from the Dutch Organization of Sciences (NWO-CW) and the Utrecht University High Potential Program.

Submitted: 30 March 2009
Accepted: 18 May 2009

References

Figure S1. **Effect of externally added phospholipid on CPE production levels in HeLa cell lysates.** (A) Levels of CPES and SMS activity were determined by TLC analysis of reaction products formed when lysates of HeLa cells were incubated with NBD-Cer in the presence or absence of externally added PE or PC. (B) As described in A, except that incubations were with lysates of hSMSr-overexpressing HeLa cells (hSMSr-V5 #1), which have a sixfold higher level of CPES activity than untransfected cells. Enzyme activity levels were expressed relative to control (no phospholipid added). Error bars indicate range, n = 2.
Figure S2. **The SAM domain containing N terminus of SMSr is required for ER retention.** (A) HeLa cells expressing hSMSr tagged with a V5 epitope at either the carboxy (hSMSr-V5) or amino terminus (V5-hSMSr) were double labeled for V5 and the ER marker protein disulfide isomerase (PDI) and visualized by conventional immunofluorescence microscopy. Note the extensive colocalization between both versions of hSMSr and protein disulfide isomerase, which is also exemplified by the nuclear envelope staining. (B) Confocal sections of HeLa cells expressing an N-terminal hSMSr-V5 truncation mutant lacking the SAM domain and double labeled for V5 and medial Golgi marker GM130. Note that SAM-deficient hSMSr fails to be retained in the ER and localizes to the Golgi. (C) Confocal sections of Drosophila S2 cells double transfected with V5-tagged dSMSr and the ER marker PEMT-GFP and immunostained for V5. (D) Confocal sections of dSMSr-V5–expressing S2 cells double labeled for V5 and the cis-Golgi marker dGMAP. (E) Confocal sections of S2 cells expressing an N-terminal dSMSr-V5 truncation mutant lacking the SAM domain and double labeled for V5 and cis-Golgi marker dGMAP. Note that, as for hSMSr, SAM-deficient dSMSr fails to be retained in the ER and localizes to the Golgi (arrows) and PM (arrowhead). (A, C, and D) Arrows indicate nuclear envelope staining. Bars, 5 μm.
Figure S3. **SMSr-depleted cells accumulate all major species of ceramide but not sphingosine.** (A) HeLa cells were treated for 3 d with si LA, hSMSr (si hSMSr #2), or hSMS1 (si hSMS1), subjected to lipid extraction, and analyzed by MS/MS as described in Materials and methods. Levels of ceramide species are given in mole percentages of total lipids analyzed. Data shown are representative of three independent experiments [Table S1]. (B) MS/MS quantification of ceramides in lipid extracts of mock-treated, LA-depleted, SMSr-depleted, or SMS1-depleted cells (HeLa, CHO-K1, and S2). Error bars indicate SD, n = 3. (C) Control (si nonsilencing [si NS] treated or mock treated) and SMSr-depleted cells were labeled with [14C]serine for 5 (S2) or 8 h (HeLa). Levels of radiolabeled ceramides (cer) and sphingoid bases (sph) were determined by TLC and autoradiography and expressed as a percentage of control. siRNA treatment (HeLa and CHO) was for 3 d, whereas dsRNA treatment (S2) was for 7 d. SMSr depletions were with si hSMSr #2 or ds dSMSr #2. Error bars indicate range, n = 2.
Figure S4. **SMSr depletion causes the disorganization of tER–Golgi units.** (A–C') S2 cells treated for 7 d (see Materials and methods) with ds GFP or dsSMSr (ds dSMSr #1 or #2) were double labeled for dSec23 (tER sites) and d120kd (Golgi stacks). Confocal projections of the single channels corresponding to Fig. 6 A are presented. (D–I) Confocal projections of S2 cells treated as in A–C' and labeled for two additional Golgi markers, Golgin 245 and dGMAP. Note the disorganization of the tER–Golgi units in dSMSr-depleted cells, which is characterized by more numerous and smaller Golgi spots and a hazy staining pattern. (J–L) HeLa cells stably expressing mannosidase II–RFP were treated with si LA, hSMSr (si hSMSr #2), or hSMS1 (si hSMS1) for 3 d. Confocal projections of the single channels corresponding to Fig. 6 G are presented. Bars, 5 µm.
Anterograde protein transport to the PM is not impaired in SMSr-depleted cells. (A–B) Delta S2 cells were treated for 7 d with ds GFP (A), ds dSMSr #1 (A'), or ds dSMSr #2 (A'') and induced for 1 h with CuSO4, followed by 90-min chase in the presence of cycloheximide in the absence (A–A'') or presence of BFA (B). The cells were double labeled for Delta and dGMAP. In contrast to BFA-treated cells, in which Delta is blocked in the ER (nuclear envelope staining marked by an arrow) and tER sites (partial colocalization with dGMAP), dSMSr depletion does not impair anterograde transport to the PM. Confocal sections are presented. (C) HeLa cells were treated with si LA or hSMSr (si hSMSr #2) for 7 d. After 6 d of treatment, cells were transfected with a plasmid-encoding GFP-tagged VSV-G ts045 protein. VSV-G ts045 was arrested in the ER at 39.5°C and chased out at 31.5°C. Confocal images of cells fixed after 0, 20, and 90 min of chase are shown. Bars, 5 µm. (D) Quantification of cells treated as in C and expressing VSV-G in a particular location (ER, Golgi, and PM). For each experimental condition, >50 VSV-G–positive cells were analyzed. Note that hSMSr depletion does not impair anterograde transport of VSVG. (E) HeLa cells were treated with si LA or si hSMSr #2 for 7 d and subjected to immunoblot analysis using an antibody against β1-integrin. Note that hSMSr depletion does not significantly alter the ratio between fully glycosylated mature β1-integrin (mat β1) and its partially glycosylated precursor (pre β1). Error bars indicate SD, n = 3.
Table S1. **Levels of ceramide species in control and SMS-depleted HeLa cells**

<table>
<thead>
<tr>
<th>Cer species</th>
<th>Mole percentage of total lipid analyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mock</td>
</tr>
<tr>
<td>Cer14:0</td>
<td>0.003 ± 0.001</td>
</tr>
<tr>
<td>Cer16:0</td>
<td>0.077 ± 0.002</td>
</tr>
<tr>
<td>Cer18:0</td>
<td>0.005 ± 0.000</td>
</tr>
<tr>
<td>Cer18:1</td>
<td>0.002 ± 0.001</td>
</tr>
<tr>
<td>Cer20:1</td>
<td>0.000 ± 0.000</td>
</tr>
<tr>
<td>Cer22:0</td>
<td>0.016 ± 0.000</td>
</tr>
<tr>
<td>Cer22:1</td>
<td>0.008 ± 0.002</td>
</tr>
<tr>
<td>Cer24:0</td>
<td>0.043 ± 0.006</td>
</tr>
<tr>
<td>Cer24:1</td>
<td>0.105 ± 0.008</td>
</tr>
<tr>
<td>Cer24:2</td>
<td>0.010 ± 0.001</td>
</tr>
<tr>
<td>Cer26:1</td>
<td>0.011 ± 0.002</td>
</tr>
<tr>
<td>Cer26:2</td>
<td>0.010 ± 0.000</td>
</tr>
<tr>
<td>Sum</td>
<td>0.292 ± 0.015</td>
</tr>
</tbody>
</table>

Cer, ceramide. HeLa cells were treated for 3 d with si LA, si hSMSr #1, or si hSMS1, subjected to lipid extraction, and analyzed by MS/MS as described in Materials and methods. Levels of ceramide species are given in mole percentages of total lipid analyzed. Data shown are means ± SD; n = 3.