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interesting to determine how neuronal activity controls DHHC2 
trafficking. This may depend on specific domains in these en-
zymes other than those required for palmitoylation.

What is the consequence of PSD-95 palmitoylation blocking 
neuronal activity? Activity blockade is known to increase synaptic 
strength by recruiting additional AMPA-type glutamate receptors, 
which are important for synaptic plasticity and homeostasis, to syn-
apses. These receptors can be anchored at synapses by PSD-95 
through interactions with regulatory proteins of the transmembrane 
AMPA receptor regulatory protein (TARP) family such as stargazin 
(Chen et al., 2000; Nicoll et al., 2006). To test whether the increased 
PSD-95 found at synapses after activity blockade might be associ-
ated with increases in AMPA receptors at synapses, the authors 
monitored the amount of the surface-localized AMPA-type recep-
tor GluR1. Using live-cell TIRFM and microRNA knockdown, the 
authors establish that the increased surface GluR1 they observe  
after activity blockade requires PSD-95 and DHHC2 with PAT 
activity. Moreover these effects are likely to be selective for AMPA-
type glutamate receptors, as neither specific N-methyl-d-aspartate– 
type glutamate receptors nor specific glutamate transporters 
(vesicular glutamate transporter) were affected. Thus, there appears 
to be remarkable selectivity to DHHC2 palmitoylation of PSD-95 
such that only certain interacting proteins are affected. How this se-
lectivity is generated is an important and unresolved question.

Overall, Noritake et al. (2009) show that altering the cel-
lular localization of a DHHC domain–containing protein allows 

activity-sensitive palmitoylation of PSD-95. They find that of 
the PATs known to act on PSD-95, only DHHC2 and -3 are 
highly expressed in the hippocampus. Moreover, only DHHC2 
is found in the postsynaptic fraction of neuronal lysates and 
localized in dendrites in small vesicle-like structures, whereas 
DHHC3 is localized to the Golgi apparatus, suggesting that 
DHHC2 is positioned properly to act on PSD-95 at synapses.

Although DHHC2 appears to be important for the activity-
regulated effects on palmitoylation of PSD-95, both PATs ex-
pressed in the hippocampus are important for the synaptic 
localization of PSD-95 (Fig. 1). Knockdown of either DHHC2 
or -3 using microRNAs reduced the amount of PSD-95 at syn-
apses, but only knockdown of DHHC2 prevented the increase of 
PSD-95 accumulation at synapses after activity blockade. More-
over, rescue experiments demonstrated that these effects require 
DHHC2 with an active PAT domain. Thus, although both DHHC 
proteins expressed in the hippocampus are needed for normal 
PSD-95 localization, they each have distinct functions.

How is DHHC2 function linked to neuronal activity? The 
enzyme activity of DHHC2 was unaffected by neuronal activity 
blockade. Using TIRFM, Noritake et al. (2009) demonstrate 
that DHHC2 reversibly localizes to sites near synapses when 
activity was blocked with glutamate receptor blockers (kyn-
urenic acid) or sodium channel blockers (tetrodotoxin). These 
effects were selective to DDHC2, as the localization of DHHC3 
was unaffected even with long-term activity blockade. It will be 

Figure 1.  Neuronal activity controls the subcellular localization of DHHC2. DHHC2 and -3 are protein acyltransferases that palmitoylate PSD-95. This mod-
i�cation is important for synaptic targeting of PSD-95. DHHC3 localizes to the Golgi regardless of neuronal activity. DHHC2 is found in small vesicle-like 
structures in the dendrite under conditions of normal neuronal activity. Activity blockade leads to the translocation of DHHC2-containing puncta to synapses, 
increased levels of synaptic PSD-95, synaptic stargazin (a TARP), and surface-localized AMPA-type glutamate receptors. AMPAR, AMPA receptor.
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it to act selectively. Recent work from Huang et al. (2009) has 
begun to define additional mechanisms for substrate specificity. 
By examining the activity of fusion proteins comprising differ-
ent domains of DHHC proteins, Huang et al. (2009) found that 
regions outside of the DHHC domain of HIP14L (DHHC13) 
determine the specificity of DHHC13 for the huntingtin protein. 
Despite these two new studies, the rules and motifs that govern 
DHHC specificity remain to be fully characterized. The study 
by Noritake et al. (2009) raises a new question: how is the local-
ization of DHHC2 regulated by neuronal activity? Given the 
clear substrate specificity of DHHC family members and their 
links to human disease (Oyama et al., 2000; Mansouri et al., 
2005; Raymond et al., 2007; Mukai et al., 2008), determining 
the mechanisms that enable the selective and specific function 
of these proteins can only become an increasingly important 
area of research.
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