A role of histone H3 lysine 4 methyltransferase components in endosomal trafficking

Zhuojin Xu,1,2 Qiang Gong,1,2 Bin Xia,1,3 Benjamin Groves,1,2 Marc Zimmermann,1 Chris Mugler,1 Dezhi Mu,3 Brian Matsumoto,2 Matthew Seaman,4,5 and Dzwokai Ma1,2

1Department of Molecular, Cellular, and Developmental Biology and 2Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106
3Department of Pediatrics, West China Second Hospital, Sichuan University, Chengdu, Sichuan Province, China 610041
4Cambridge Institute for Medical Research and 5Department of Clinical Biochemistry, University of Cambridge, Cambridge, England CB2 0XY, UK

Histone lysine methyltransferase complexes are essential for chromatin organization and gene regulation. Whether any of this machinery functions in membrane traffic is unknown. In this study, we report that mammal Dpy-30 (mDpy-30), a subunit of several histone H3 lysine 4 (H3K4) methyltransferase (H3K4MT) complexes, resides in the nucleus and at the trans-Golgi network (TGN). The TGN targeting of mDpy-30 is mediated by BIG1, a TGN-localized guanine nucleotide exchange factor for adenosine diphosphate ribosylation factor GTPases. Altering mDpy-30 levels changes the distribution of cation-independent mannose 6-phosphate receptor (CIMPR) without affecting that of TGN46 or transferrin receptor. Our experiments also indicate that mDpy-30 functions in the endosome to TGN transport of CIMPR and that its knockdown results in the enrichment of internalized CIMPR and recycling endosomes near cell protrusions. Much like mDpy-30 depletion, the knockdown of Ash2L or RbBP5, two other H3K4MT subunits, leads to a similar redistribution of CIMPR. Collectively, these results suggest that mDpy-30 and probably H3K4MT play a role in the endosomal transport of specific cargo proteins.

Introduction

Covalent histone modifications regulate chromatin structure and function. Methylation of lysine residues within histones H3 and H4 by histone lysine methyltransferase complexes is one such modification. Depending on the site of the modified lysine residue and the extent of methylation (mono-, di-, or trimethylated), these modifications can lead to either activation or repression of transcription (Ng et al., 2009). Emerging evidence indicates an intimate link between abnormal histone methylation and human disease. Although histone lysine methyltransferase complexes primarily reside in the nucleus and target histones, their presence in the cytosol has been suggested (Su et al., 2005), and several nonhistone substrates have been identified (Huang and Berger, 2008). Based on our knowledge, whether a histone lysine methyltransferase complex or its subunits reside or function in the intracellular vesicular transport pathway is currently unknown. In this regard, an organellar proteomics study has detected arginine dimethylation in several peripheral Golgi proteins and revealed two putative Golgi-associated methyltransferases (Wu et al., 2004).

In mammals, at least five different SET1 family methyltransferase complexes target histone H3 lysine 4 (H3K4; Rutherburg et al., 2007; Shilatifard, 2008). Although these complexes contain distinct catalytic subunits, they share common components, including Ash2L, RbBP5, WDR5, and mammal Dpy-30 (mDpy-30). Ash2L, RbBP5, and WDR5 form a stable core complex that confers substrate specificity and controls catalytic activity (Dou et al., 2006; Steward et al., 2006). Dpy-30 was originally identified as an essential component of Caenorhabditis elegans dosage compensation machinery (Hsu et al., 1995). However, Dpy-30 mutant males also exhibit growth and development defects, indicating a general function of this protein. Subsequent studies have demonstrated that the yeast and mammalian orthologues of Dpy-30, Sdc1 (Miller et al., 2001; Roguev et al., 2001) and mDpy-30 (Hughes et al., 2004; Cho et al., 2007), respectively,
Figure 1. Imaging analyses of perinuclear mDpy-30 in HeLa cells. (A–C) Cells were fixed in 3% formaldehyde, permeabilized with 0.1% saponin, immunostained, and visualized using conventional (A and B) or confocal (C) microscopy. Arrows indicate sites of colocalization. (A) Colocalization analysis of mDpy-30 and recycling endosomes (EGFP-Rab11), late endosomes (EGFP-Rab7), and lysosomes (Lamp1). (B) Colocalization analysis of mDpy-30 and the cis-Golgi network/cis-Golgi (p115), medial-Golgi (GRASP55), or TGN (TGN46) marker. (C) Colocalization analysis of mDpy-30 and p115 or TGN46. A representative image from single z section is shown (the full z stack for both are available in the JCB DataViewer; http://jcb-dataviewer.rupress.org/jcb/browse/1505/2600). Pearson’s correlations were calculated from each image in the z stack of confocal microscopy images of the perinuclear regions (defined by p115 or TGN46) using the colocalization analysis from Image-Pro Plus 3.6 software (Media Cybernetics; Student’s t test, P = 5.02393 × 10^{-12}; n = 14). Error bars indicate the standard deviation of the values obtained from individual cells. Bars, 10 µm.

are common subunits of several H3K4 methyltransferase (H3K4MT) complexes and that deletion of Sdc1 from yeast leads to a greatly reduced level of H3K4 trimethylation (Schneider et al., 2005). Despite being a conserved H3K4MT subunit, the molecular function of mDpy-30 remains unknown. We originally isolated mDpy-30 from a rat brain cDNA library as a potential binding partner of a potassium channel in a yeast two-hybrid screen. Although we have not been able to confirm the interaction between mDpy-30 and the channel protein, we found that mDpy-30 localized to the Golgi apparatus and proceeded to examine the role of mDpy-30 in vesicular traffic.
Figure 2. Subcellular distribution analyses of CIMPR, TGN46, and TfnR in HeLa cells depleted of or overexpressing mDpy-30. All siRNAs were used at a concentration of 20 nM, and transfected cells were analyzed 48 h after transfection. Unless noted otherwise, the values shown in all bar graphs and Western blots are the mean results obtained from at least three independent experiments. For imaging analyses, >500 cells were counted in each experiment. (A) Subcellular distributions of CIMPR, TGN46, or TfnR in HeLa cells treated with control nontargeting or mDpy-30 siRNAs. Cells were processed as described in Fig. 1. Arrows indicate cell protrusions. (B) Enrichment of CIMPR near cell protrusions (indicated by arrows) was confirmed by phalloidin F-actin costaining, and the fraction of cells displaying enriched CIMPR near protrusions was scored. (C) Western blot analysis of the CIMPR protein level after the knockdown of mDpy-30. The numbers represent the mean value of six independent experiments. (D) The effect of mDpy-30 overexpression on the localization of CIMPR or β-GalT1 (compare asterisks with arrows). Only those cells exhibiting a high level of exogenous mDpy-30 were counted. The experiment was repeated once, and the mean value is shown. (E) The protein level of CIMPR in cells overexpressing mDpy-30. (B and E) Error bars indicate the standard deviation of the values obtained from independent experiments. Bars, 10 μm.
Figure 3. The role of mDpy-30 in the endosome to TGN transport of CIMPR in HeLa cells. Transfection and staining were performed as described in Figs. 2 and 1, respectively, except in G and J where 0.1% Triton X-100 was used to assure even permeabilization of the nuclear membrane among cells. The values shown in all bar graphs and Western blots are the mean results obtained from at least three independent experiments. In the case of imaging analyses, >500 cells were counted in each experiment. Except in J, arrows and the arrowhead indicate cell protrusions. (A) The impact of mDpy-30 knockdown on...
Results and discussion

TGN localization of mDpy-30

Immunofluorescence study in multiple cell types revealed that mDpy-30 displayed an unanticipated dual localization, both nuclear and cytoplasmic (see Fig. S1 for antibody characterization), the latter of which was enriched at a perinuclear site (Fig. S1 E). The following observations suggest that the dual localization is an intrinsic property of mDpy-30. First, an HA-tagged mDpy-30 exhibited a similar distribution when stably expressed in CV-1 cells (Fig. S1 G). Second, live cell imaging indicated that a pool of mDpy-30–monomeric RFP (monomeric RFP fused to the C terminus of mDpy-30) resided in a perinuclear region in addition to the nucleus (Fig. S1 H). To define the identity of perinuclear mDpy-30 staining, we conducted a comparison between perinuclear mDpy-30 and subcellular markers known to reside in compartments near the nucleus (Fig. 1 A). We found little or no colocalization between mDpy-30 and recycling endosomes (labeled by an EGFP fusion of Rab11; Ullrich et al., 1996), late endosomes (EGFP fusion of Rab7; Meresse et al., 1995), and lysosomes (Lamp1; Chen et al., 1985). When compared with Golgi markers (Fig. 1 B), mDpy-30 displayed little colocalization with p115, a cis-Golgi network/cis-Golgi marker (Nelson et al., 1998), and GRASP55, a medial-Golgi marker (Shorter et al., 1999). However, mDpy-30 staining became in close proximity to and partially overlapped with that of TGN46, a TGN marker (Ponnambalam et al., 1996). Similar results were obtained using confocal microscopy (Fig. 1 C and JCB Data Viewer; http://jcb-databrowser.rupress.org/jcb/browse/1505/2600); Pearson’s correlation analysis indicated that there was a significantly higher correlation indicated that there was a significantly higher correlation between the TGN46 and mDpy-30 staining than that of p115 and mDpy-30. Collectively, our data suggest that a pool of mDpy-30 is present at the TGN.

Altered subcellular distribution of cation-independent mannose 6-phosphate receptor (CIMPR) but not TGN46 or transferrin receptor (TfnR) in cells depleted of or overexpressing mDpy-30

As an H3K4MT subunit, the TGN localization of mDpy-30 was unexpected and implied a potential role of this protein in membrane traffic. To test whether mDpy-30 was involved in TGN trafficking, we investigated the impact of depleting or overexpressing mDpy-30 on the subcellular distributions of three cargo proteins that cycle among the TGN, plasma membrane (PM), and endosomes, including TGN46 (which traffics from the TGN to the PM to early/recycling endosomes and back to the TGN [Ghosh et al., 1998; Mallard et al., 2002; Ganley et al., 2008]), CIMPR (which moves from the TGN to early/recycling endosomes to late endosomes and back to the TGN or from the TGN to the PM to early/recycling endosomes to late endosomes to the TGN [Ghosh et al., 2003]), and TfnR (which cycles between the PM and early/recycling endosomes [Maxfield and McGraw, 2004]).

We first compared the subcellular distributions of TGN46, CIMPR, and TfnR in HeLa cells transfected with a nontargeting control or mDpy-30 siRNA (see Fig. S2 for siRNA characterization). Although both control and mDpy-30 knockdown cells expressed a similar level of CIMPR (Fig. 2 C), depletion of mDpy-30 resulted in a five- to sixfold increase in the fraction of cells displaying an enrichment of CIMPR near cell protrusions (Fig. 2, A and B). In contrast, neither TGN46 nor TfnR became concentrated in these compartments. The distribution of CIMPR was also more sensitive to mDpy-30 overexpression (i.e., a reduced perinuclear and an increased dispersed staining compared with control cells) than those of β-Ga11 (Fig. 2 D) and TGN46 (not depicted). Moreover, the overexpression of mDpy-30 caused a 25% reduction of CIMPR protein level (Fig. 2 E), possibly by promoting its lysosomal degradation.

Function of mDpy-30 in CIMPR endosomal transport

We next investigated the impact of depleting mDpy-30 on CIMPR endosomal transport in a HeLa cell line stably expressing a CD8 fusion of CIMPR. A previous study has shown that the trafficking properties of this fusion are identical to those of endogenous CIMPR (Seaman, 2004). Western blot analysis indicated that mDpy-30 knockdown had no significant influence on the level of CD8-CIMPR (Fig. 3 A).

We labeled surface CD8-CIMPR using an anti-CD8 antibody and followed the endosomal transport at different time points after internalization (Fig. 3, B and C). At 5 min after internalization, CD8-CIMPR was primarily found in peripheral vesicles (presumably early endosomes) in virtually all control and mDpy-30–depleted cells, suggesting that mDpy-30 depletion had no substantial impact on the internalization of CD8-CIMPR.
At 15 min after internalization, a pool of CD8-CIMPR had reached a perinuclear site in ~75% of the control cells; this perinuclear compartment became the most prominently stained structure in the majority of cells. However, the fraction of cells displaying perinuclear localization of CD8-CIMPR was reduced in mDpy-30 knockdown cells (52% for siRNA1 and 27% for siRNA2). Even in those cells exhibiting a perinuclear CD8-CIMPR staining, a large fraction of fusion proteins remained in peripheral endosomes throughout the cytosol (Fig. 3 C). The difference in the perinuclear targeting of CD8-CIMPR persisted after 45 min of internalization. Accompanying this decreased efficiency in targeting internalized CD8-CIMPR to the perinuclear

![Image](https://example.com/image.png)
region, there was a time-dependent enrichment (a fourfold increase for siRNA1 or -2) of fusion proteins at a compartment near the protrusions of mDpy-30-depleted cells (Fig. 3, B and C). To confirm that mDpy-30 knockdown exerted a similar effect on endogenous CIMPR, we added the anti-CIMPR antibody to the culture medium of HeLa cells for 1 h at 37°C. The antibody labeling and internalization steps were combined and lengthened to improve the signal strength of internalized endogenous CIMPR (Fig. 3 D). As with CD8-CIMPR, a fraction of CIMPR was found near protrusions in mDpy-30-depleted cells. Because the endosomal transport of a CD8-furin fusion was altered by mDpy-30 siRNA in a similar way (unpublished data), the effect of mDpy-30 on trafficking was not specific to CIMPR.

The observation that the level of CD8-CIMPR at the protrusions of mDpy-30 knockdown cells increased within 45 min of internalization implied that mDpy-30 functions at a late endosomal transport step. To test this, we simultaneously compared the endosomal transport of TfnR (via biotinylated transferrin) and CD8-CIMPR. As shown in Fig. 3 E, at 5 min after internalization, CD8-CIMPR and TfnR colocalized at an early endosomal compartment in both control (not depicted) and mDpy-30–depleted cells. At 10 or 20 min after internalization, TfnR entered tubular recycling endosomes, but there was little colocalization with CD8-CIMPR, indicating that these proteins had been sorted into different pathways after their transit through the early endosomes. This was in accordance with a lack of EEA1 (a marker of early endosomes) staining in the protrusion regions where internalized CD8-CIMPR became enriched (Fig. 3 F).

Collectively, our data suggest that mDpy-30 regulates the late endosomal trafficking of a subset of cargo proteins such as CIMPR and furin. Given the TGN localization of mDpy-30 as well as the inefficient return of internalized CD8-CIMPR to a perinuclear site, mDpy-30 is probably involved in the endosome to TGN transport of CIMPR. In the absence of mDpy-30, a pool of CIMPR is redirected to endosomes near cell protrusions. However, we cannot exclude a role of mDpy-30 in the transport between endosomes or from the TGN to endosomes. Moreover, because mDpy-30 knockdown also reduced the H3K4 trimethylation (Fig. S2 E), our data do not allow us to distinguish whether mDpy-30 modulates CIMPR trafficking via transcription or posttranscriptional effects or both.

A role of the H3K4MT complex or complexes in the endosomal transport of CIMPR

To explore H3K4MT involvement in trafficking, we examined the endosomal transport of CD8-CIMPR after knocking down either Ash2L or RbBP5, two other common H3K4MT subunits (Fig. 3, G and H). Indeed, cells transfected with either of the two siRNAs against Ash2L or RbBP5 accumulated internalized CD8-CIMPR near cell protrusions. The effect of Ash2L or RbBP5 siRNAs on CIMPR was not caused by their impact on the level of mDpy-30 protein (Fig. 3 I). In contrast, treatment of cells with an siRNA against SUV39H1, a component of the H3K9MT complex (Rea et al., 2000), exerted little effect. Moreover, similar to mDpy-30 overexpression, overexpression of either Ash2L or RbBP5 increased the fraction of cells displaying a dispersed CIMPR distribution without changing that of β-GalT1 (Fig. 3 J). These results indicate a link between H3K4MT and the endosomal transport of CIMPR.

Characterization of the CIMPR-positive peripheral compartment in mDpy-30 knockdown cells

Considering that the STX10–STX16–Vti1A–VAMP3 SNARE complex mediates the endosome to TGN transport of CIMPR (Ganley et al., 2008), we asked whether CIMPR colocalized with STX10 and VAMP3 at cell protrusions. Compared with control cells, after mDpy-30 knockdown, a pool of STX10 and VAMP3 also became enriched near cell protrusions (Fig. 4 A), where they exhibited a partial colocalization with internalized CD8-CIMPR (Fig. 4 B). However, VAMP4 and VAMP8, two other SNARE proteins along the TGN–PM–endosome loop (Cocucci et al., 2008; Kanwar et al., 2008), displayed little or only modest enrichment and little to no colocalization with CD8-CIMPR within this region (unpublished data).

To better define the CIMPR-positive compartment near cell protrusions, we investigated the distributions of Rab GTPase proteins in control and mDpy-30 knockdown cells. Each Rab protein has a compartment-specific localization and plays an essential role in defining the compartmental function in trafficking (Cai et al., 2007; Markgraf et al., 2007; Nielsen et al., 2008). For example, Rab4, -5, and -11 reside in early endosomal compartments with distinct functions. Rab5 modulates endocytosis, and Rab6 and -11 control the endosomal recycling from early and recycling endosomes, respectively. However, Rab7 and -9 primarily function during the late endosomal trafficking, and Rab6 is thought to regulate endosome to TGN transport. As indicated in Fig. 4 (C and D), knockdown of mDpy-30 induced enrichment of Rab11 and, to an even higher extent, Rab4 at cell protrusions without significantly affecting the distributions of Rab5, -6, -7, and -9. This observation implies that the depletion of mDpy-30 causes a subpopulation of recycling endosomes to be enriched at cell protrusions.

BIG1-mediated recruitment of mDpy-30 to the TGN

To gain mechanistic insight into how mDpy-30 modulates endosomal trafficking, we set out to identify proteins interacting with mDpy-30. We generated CV-1 cells stably expressing a GFP fusion of mDpy-30 and used an anti-GFP antibody covalently linked to magnetic microbeads to immunoprecipitate mDpy-30–EGFP and its associated proteins. Tandem mass spectrometry analysis of the immunoprecipitate revealed several known mDpy-30–interacting partners, including Ash2L and WDR5 (two H3K4MT components), as well as a novel interacting partner, BIG1 (a TGN-localized ADP ribosylation factor guanine nucleotide exchange factor; Fig. 5 A; Morinaga et al., 1997). We confirmed the mDpy-30–BIG1 interaction using coimmunoprecipitation between mDpy-30 and a HA-tagged BIG1 (Fig. 5 B) as well as between endogenous mDpy-30 and BIG1 (Fig. 5 C). Furthermore, mDpy-30 and BIG1 colocalized...
at the perinuclear TGN region (Fig. 5 D). Interestingly, BIG1 depletion greatly reduced the TGN staining of mDpy-30 without affecting β-GalT1 localization (Fig. 5 E). However, overexpression of BIG1 led to an enhanced staining of perinuclear mDpy-30 (Fig. 5 F). Thus, our data show that BIG1 plays a major role in recruiting mDpy-30 to the TGN.
In this study, we have presented evidence supporting an unexpected link between H3K4MT and endosomal transport. Our findings raise several intriguing questions for future studies. To begin, the mechanism by which mDpy-30 and H3K4MT regulate the endosomal transport remains unknown. One possibility is that mDpy-30, Ash2L, and RbBP5 are components of a yet-to-be identified methyltransferase complex at the TGN where they affect endosomal transport by controlling the methylation of a trafficking regulator. However, we have not been able to detect the Golgi localization of either Ash2L or RbBP5 using multiple antibodies or their GFP fusions (unpublished data). Another possibility is that the TGN pool of mDpy-30 coordinates with nuclear H3K4MT to modulate endosomal transport. The identification of BIG1 as an mDpy-30–interacting protein may provide clues to the aforementioned question. Both BIG1 and BIG2, a structurally similar ADP ribosylation factor guanine nucleotide exchange factor also found at the TGN (Yamaji et al., 2000), are involved in endosome to TGN transport (Ishizaki et al., 2008) and/or TGN maintenance (Manolea et al., 2008). Intriguingly, the nuclear accumulation of BIG1 in HepG2 cells has been observed under serum starvation conditions (Padilla et al., 2004) and PKA activation (Citterio et al., 2006). It will be interesting to investigate whether mDpy-30 regulates BIG1 function and whether BIG1 influences H3K4MT activity. Another question regards the physiological significance of our observations. Increasing evidence has implicated CIMPR in cell migration (Chapman, 1997; Roshy et al., 2003; Joyce and Hanahan, 2004; Wood and Hulett, 2008). Moreover, Rab4 and -11 (Caswell and Norman, 2006) and VAMP3 (Proux-Gillardeaux et al., 2005; Tayeb et al., 2005) all impact integrin trafficking and cell adhesion/migration. The fact that knockdown of mDpy-30 or other H3K4MT components results in an enrichment of Rab4- or Rab11-positive endosomes at cell protrusions suggests that H3K4MT may regulate cell adhesion/migration via modulating endosomal recycling. It is important to see whether the Rab4- and Rab11-positive compartments accumulate at the protrusions of mDpy-30–depleted cells indeed have a recycling function and to determine what types of cargo proteins besides CIMPR and furin transit via these compartments. Given a key role of local endocytosis and recycling of integrins at the cell leading edge in migration (Caswell and Norman, 2008), it will be tempting to examine how the local trafficking of integrins is changed in cells depleted of mDpy-30 and other H3K4MT components and how this change regulates cell adhesion/migration.

Materials and methods

DNA constructs and reagents

mDpy-30 was cloned from a yeast two-hybrid rat brain cDNA library (Clontech Laboratories, Inc.). The full-length cDNA was PCR amplified and inserted into a bacterial (pUH21.2; a gift from H. Bujard, European Molecular Biology Organization, Heidelberg, Germany) or mammalian (pcDNA3.1; Invitrogen) expression vector. A HA epitope (YPYDVPDYA) or EGFP (Clontech Laboratories, Inc.) was added to the C terminus of mDpy-30 when needed. Rab cDNA clones were gifted from C. Bucci (Università degli Studi di Lecce, Lecce, Italy). The pcMWHA-BIG1 expression construct was a gift from M. Vaughan (National Institutes of Health, Bethesda, MD). The antibodies used in this study are monoclonal anti-HA (HA11; Covance), polyclonal anti-HA (ICL1; BIG1ants Cruz Biotechnology, Inc.), CD8 (Millipore), p115 (BD); GRASP55 (a gift from F. Barr, University of Liverpool, Liverpool, England, UK); β-GalT1 (a gift from U. Mandel, University of Copenhagen, Copenhagen, Denmark). TGN46 (a gift from S. Ponnambalam, University of Leeds, Leeds, England, UK; Abcam), CIMPR (Biolegend), Lamp1 (Developmental Studies Hybridoma Bank), EEA1 (Sigma-Aldrich), VAMP3 (Synaptic Systems GmbH), and syntaxin 10 (a gift from B.L. Tang and W. Hong, National University of Singapore, Singapore, Republic of Singapore). Biotin-transferin was obtained from Invitrogen. The siRNAs used in this study are mDpy-30 siRNA1–3 (target sequences: siRNA1, 5′-CCACCAAATCCCATGAATT-3′; siRNA2, 5′-AACGCAGGTGCAAGAA-3′; siRNA3, 5′-AGACAGAAGTGGAGAATA-3′; Thermo Fisher Scientific), Ash2L siRNA1 and -2 (target sequences: siRNA1, 5′-CCCGATATCACTATCTTAAA-3′; siRNA2, 5′-CCGTTTAAACAGAT GGCTA-3′; QIAGEN), RbBP5 siRNA1 and -2 (target sequences: siRNA1, 5′-CAGGGTGCTCTCAACAAGCCTA-3′; siRNA2, 5′-ACGGCAGATCGAA TAATCAGA-3′; QIAGEN), and SUV39 siRNA1 (target sequence: 5′-GGCG GTTCCGATTTGAAGC-3′; QIAGEN). The nontargeting control siRNA was obtained from QIAGEN (AllStars Negative Control siRNA).

Expression of recombinant mDpy-30 protein

The cDNA of rat mDpy-30 was cloned into the BamHI–HindIII sites of pUH21.2 vector and transformed into Escherichia coli. Transformants were grown in lysogeny broth medium containing 5 g/liter NaCl until the cell density reached an OD600 of 0.6. Expression of mDpy-30 protein was then induced using 1 mM isopropyl-β-D-thiogalactopyranoside for 3 h.

Cell culture and transfection

COS7, CV-1, J774, and Hela cells were cultured in advanced DME (Invitrogen) supplemented with 4% fetal bovine serum, 2 mM glutamine, and 1 lx penicillin-streptomycin (Cellgro). The same medium was used to grow flipase recombinase enzyme (Flip)–In–CV-1–mDpy-30–HA (Invitrogen) stable cells and Hela–CDB-CIMPR or Hela–CDB-furin stable cell lines except that 200 µg/ml hygromycin and 100 µg/ml G418 were added, respectively, for maintenance purposes. To generate Flp-In–CV-1–mDpy-30–HA or Flp–In–CV-1–mDpy-30–EGFP, the mDpy-30–HA or mDpy-30–EGFP fusion was inserted into pcDNA5/Flp recombination target, transfected into Flp–In–CV-1 (Invitrogen) and selected by hygromycin according to the manufacturer’s instructions (Invitrogen). When needed, cells were incubated with DNA using FuGENE6 or FuGENE HD (Roche) or siRNA using Lipofectamine 2000 (Invitrogen), and the effects of transfection were investigated 24 h (for DNA) or 48 h (for siRNA) after the transfection, respectively. All siRNAs were used at a concentration of 20 nM.

SDS-PAGE and Western blot analysis

Untransfected or transfected cells were solubilized in ice-cold radioimmuno-precipitation assay lysis buffer (50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 1 mM EDTA, 1% NP-40, 0.5% Na deoxycholate, and 0.1% SDS complemented with complete protease inhibitors [Roche] and 1 mM PMSF) and cleared by centrifugation at 4°C. Cell homogenates were prepared using a Histone Preparation Mini kit (Active Motif). Cell lysates were quantitated using BCA Protein Assay (Pierce) and separated by SDS-PAGE (6–15% gels; Bio-Rad Laboratories), and transferred to Immobilon 0.45-µM polyvinylidene difluoride membranes (Millipore) using semi Dry Electroblotting System (Owl). Membranes were incubated with appropriate primary antibody for 1 h in a 1:1 mixture of blocking buffer (Odyssey) and PBS supplemented with 0.1% Tween 20, washed with PBS supplemented with 0.1% Tween 20 (three times for 5 min each), incubated with appropriate secondary antibody (Odyssey) for 30 min in a 1:1 mixture of Odyssey blocking buffer and PBS supplemented with 0.1% Tween 20 and 0.01% SDS, washed first with PBS supplemented with 0.1% Tween 20 (three times for 5 min each) followed with PBS for 5 min, and dried in the dark. Fluorescence quantification was performed on an Infrared Imaging System (model 9120; Odyssey).

Immunofluorescence analysis

Cells or transfected cells were fixed in PBS containing 3% formaldehyde for 5 min, permeabilized with PBS containing 0.1% saponin or Triton X-100 for 15 min, blocked in 5% goat serum for 30 min, incubated with primary antibody in the blocking buffer for 1 h, washed in PBS three times for 5 min each, incubated with fluorescein-conjugated secondary antibody in the blocking buffer for 1 h, washed in PBS three times for 5 min each, incubated in PBS containing 1 µg/ml DAPI for 5 min, and washed in PBS three times for 20 min.
5 min each. Immunostained cells were allowed to air dry, mounted, and examined with a microscope (IX-81; Olympus).

Conventional microscopy

An IX-81 microscope was used in the epifluorescence experiments. A Plan-Neofluar 60x oil immersion objective with a 1.45 numerical aperture was used. All micrographs were performed at room temperature. Slides were mounted in Slow-Fade Gold antifade reagent (Invitrogen). Our secondary antibodies were conjugated to either Alexa Fluor 488 or Rhodamine red-X (appearing as green and red in the images, respectively). A monochrome digital camera (Evolution QEi; Media Cybernetics) mounted to the Olympus microscope and the in vivo acquisition software version 3.2.0 (Media Cybernetics) were used to capture images and analyze the microscopic images. Finally, to crop the images for publication, we used Photoshop (Adobe) and Illustrator (Adobe) software packages.

Confocal microscopy

Images of the cells were captured with a laser-scanning confocal microscope (Fluoview 500; Olympus) with a 40x Plan-Neofluar NA 1.3 lens. Two laser lines were used at 488 and 543 nm to excite the fluorochromes. Sequential color image capture was used to collect images. To record the distribution of label from apical to basal portions of the cell, a z series of 20 images was captured of the cells at 0.5-µm steps.

Immunoprecipitation

Cells or transfected cells were solubilized in ice-cold NP-40 lysis buffer (50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 1 mM EDTA, and 1% NP-40 complemented with complete protease inhibitor and 1 mM PMSF) and cleared by centrifugation at 4°C. Immunoprecipitates were collected by a brief centrifugation after incubating the supernatant with a primary antibody for 1 h followed by protein G–Sepharose (Invitrogen) for 2 h at 4°C. The Sepharose beads were washed four times in ice-cold lysis buffer and once with PBS, and the bound proteins were eluted with SDS-PAGE sample buffer at 55°C for 1 h at 90°C for 10 min.

Identification of mDpy-30–interacting proteins by immunopurification and mass spectroscopy

To purify mDpy-30–associated proteins, a mouse monoclonal anti-GFP antibody covalently linked to magnetic microbeads (μMACS GFP Tagged Protein Isolation kit; Miltenyi Biotech) was used to immunoprecipitate the mDpy-30–EGFP and its associated proteins from the Flp-In–CV-1-mDpy-30–EGFP stable cells under a stringent wash condition (650 mM NaCl, 1% [w/v] goat serum, 0.1% SDS, and 50 mM Tris-HCl, pH 8.0). Flp-In–CV-1 cells stably expressing EGFP alone were included as a negative control. The immunoprecipitates were then separated on SDS-PAGE and stained with SYPRO Ruby. The putative mDpy-30–associated protein bands were excised, eluted, and subjected to digestion, and the resulting peptides were resolved on a reverse-phase liquid chromatography system and detected by coupled tandem mass spectrometry (microparticle high performance liquid chromatography system [NanoFlow 1100; Agilent Technologies]) connected to a mass spectrometer (ESI-QToF 2; Micromass)].

Internalization assay

Hela–CDB-CIMP (or Hela–CDB-Финин) cells were blocked in PBS containing 2% normal goat serum for 30 min and incubated with 1 µg/ml anti-CDB antibody in PBS containing 2% goat serum for 1 h at 0°C to label the surface fusion proteins. After removing the unbound antibodies by PBS wash at 0°C three times for 5 min each, cells were transferred into prewarmed culture medium and returned to 37°C to allow internalization to proceed for the indicated periods of time before immunofluorescence study. To monitor the endosomal transport of endogenous CIMP (Hela cells, anti-CIMP antibody was added to the culture medium at 5 µg/ml for 1 h at 37°C before fixation to enhance the internalization signal by allowing continuous labeling and internalization.

Online supplemental material

Fig. S1 shows the characterization of the rabbit polyclonal anti-mDpy-30 antibody using Western blot analyses, immunoprecipitation, and immunofluorescence microscopy. Fig. S2 shows the characterization of three different mDpy-30 siRNAs and the knockdown efficiency of different pools of mDpy-30 as well as the effect of mDpy-30 knockdown on H3K4 trimethylation. Online supplemental material is available at http://www.jcb.org/cgi/content/full/jcb.200902146/DC1.

We are grateful to the following individuals for their gifts: Drs. C. Bucci for the Rab CDNA clones; M. Vaughan for the pCMVHA-BIG1 expression construct; F. Bar for anti-GRASP55; S. Ponnambalam for anti-TGN46; U. Mandel for anti-ß-GalT1; W. Hong for anti-syntxin 10, and C. Jackson (National Institutes of Health, Bethesda, MD) for anti-BIG1 antibodies. This work was supported in part by a research grant from the Cancer Research Coordinating Committee.

Submitted: 27 February 2009
Accepted: 9 July 2009

References

Wood, R.J., and M.D. Hulett. 2008. Cell surface-expressed cation-independent mannose 6-phosphate receptor (CD223) binds enzymatically active hepa-
Figure S1. Characterization of the antibodies against mDpy-30. We raised a rabbit polyclonal antibody using the N-terminal 39 aa of mDpy-30 as the antigen. (A–F) After passing the sera through a peptide column, we immunopurified the antibody and assessed its specificity in Western blot analyses (A–C), immunoprecipitation (D), and immunofluorescence (E and F). (A) 0.2 µg/ml of the antibody detected a ubiquitous 17-kD band among all cell lines examined. An equal amount of total protein was loaded into each well, and an antibody against GAPDH (glyceraldehyde-3-phosphate dehydrogenase) was used as a loading control. Although the expected molecular mass based on amino acid sequence is ~11 kD, mDpy-30 runs at ~17 kD on SDS-PAGE. (B) The 17-kD band disappeared when the antibody was replaced by preimmune sera or rabbit IgG or presoaked with a 20-fold molar excess of antigen. Black lines indicate that intervening lanes have been spliced out. (C) The 17-kD band exhibited mobility identical to that of recombinant mDpy-30 expressed in E. coli. We expressed mDpy-30 in E. coli using the pUH expression system (Deuschle et al. 1986. EMBO J. 5:2897–2904; Bujard et al. 1987. Methods Enzymol. 155:416–433), prepared the lysate, and ran it alongside a HeLa cell lysate on an SDS-PAGE gel with both samples detected by anti–mDpy-30 antibody. (D) 4.0 µg/ml of the antibody immunoprecipitated both endogenous and HA-tagged mDpy-30. HA-tagged mDpy-30 was transfected into HeLa or COS-7 cells, and the cell lysates were subjected to immunoprecipitation 24 h later. The immunoprecipitates were then analyzed on Western blots with either anti–mDpy-30 antibody or a monoclonal anti-HA antibody. (E) 1.0 µg/ml of the antibody labeled puncta structures in the nucleus and the cytoplasm among all cell lines examined; interestingly, the cytoplasmic staining was found to be enriched at a perinuclear site. (F) Both nuclear and perinuclear staining was abolished in HeLa cells when the antibody was replaced by rabbit IgG or presoaked with a 20-fold molar excess of antigen. (G) In Flp-In–CV-1 cells stably expressing HA-tagged mDpy-30, a mouse monoclonal anti-HA antibody revealed a subcellular localization similar to that of endogenous mDpy-30. Because the perinuclear staining of mDpy-30 is sensitive to the Triton X-100 treatment (not depicted), all of the images shown were obtained from cells permeabilized with 0.1% saponin. The variable intensity of nuclear staining was caused by the uneven saponin permeabilization of the nuclear membrane among cells. Indeed, nuclear staining was readily detected in all cells permeabilized with 0.1% Triton X-100 (not depicted). (H) Live cell imaging of mDpy-30. The arrow indicates perinuclear mDpy-30. HeLa cells grown on a 35-mm glass-bottom dish were transfected with mDpy-30–monomeric RFP (mRFP) cDNA and visualized using conventional microscopy on a 37°C heating stage in the presence of 20 mM Hepes, pH 7.4, Nu, nucleus. A chicken polyclonal anti–mDpy-30 antibody was also raised against the same region of mDpy-30 and characterized as described in E–G (not depicted). Bars, 10 µm.
Figure S2. Characterization of the siRNAs against mDpy-30. [A–C] HeLa cells were transfected with a nontargeting control siRNA or mDpy-30 siRNA1, -2, or -3, and the depletion of mDpy-30 was analyzed using a Western blot (A), conventional immunofluorescence microscopy (B), or subcellular fractionation followed by a Western blot analysis (C). Three different siRNAs targeting different sites of human mDpy-30 mRNA were used to avoid the potential confusion caused by nonspecific effects of RNA interference. Unless otherwise noted, all siRNAs were used at a concentration of 20 nM, and transfected cells were analyzed 48 h after transfection. (A) Compared with the nontargeting control siRNA, all three mDpy-30 siRNAs specifically decreased the total level of mDpy-30 protein by ~70% without affecting the level of GAPDH (glyceraldehyde-3-phosphate dehydrogenase; a loading control) in HeLa cells. (B) Transfection with any of the three mDpy-30 siRNAs but not the control nontargeting siRNA caused a great reduction of cytoplasmic staining in >90% of the cells (n > 500). However, the nuclear staining of mDpy-30 was only moderately decreased. A representative image is shown. Because the knockdown efficiencies of all three mDpy-30 siRNAs are similar, we performed our subsequent experiments using siRNA1 and -2. Nu, nucleus. (C) Similar to the obser-
vation in immunofluorescence, subcellular fractionation analysis indicated that either of the two mDpy-30 siRNAs but not the nontargeting control efficiently depleted the cytoplasmic and membrane pools of mDpy-30 and, to a lesser extent, the nuclear pool of mDpy-30 48 h after transfection. The subcellular fractionation was conducted using a Qproteome Cell Compartment kit (QIAGEN); compartment-specific markers were used to evaluate fractionation effectiveness. (D) To gain more insight into the differential knockdown efficiency of cytoplasmic, membrane, and nuclear mDpy-30, we conducted a time course study using subcellular fractionation. HeLa cells were transfected with control siRNA or mDpy-30 siRNA1 or -2, and the knockdown efficiency of mDpy-30 in different subcellular fractions was determined 24, 48, and 72 h after transfection. For the samples collected at 72 h, a second siRNA transfection was performed 48 h after the initial transfection. Although we currently do not know the specific mechanism causing different knockdown efficiencies observed between different pools of mDpy-30, there are at least two possible explanations. One possibility is compartment-specific protein degradation. Several early studies have documented that the cytoplasmic and nuclear pools of a protein can exhibit a different half-life as the result of compartment-specific degradation in both yeast (Blondel et al. 2000. EMBO J. 19:6085–6097; Lenk and Sommer. 2000. J. Biol. Chem. 275:39403–39410) and higher eukaryotes (Lingbeck et al. 2003. J. Biol. Chem. 278:1817–1823). Such compartment-specific degradation might be the result of the restricted distribution of components involved in protein degradation (e.g., the ubiquitin conjugation/ligation system) or the different accessibilities of the substrate to the degradation machinery (e.g., the masking of degradation signals by covalent modifications or protein–protein interactions). Alternatively, mDpy-30 might have a higher affinity toward its nuclear-binding partner or partners compared with those in the cytoplasm/membrane. Under this scenario, if the dissociation of mDpy-30 from its binding partners is the rate-limiting step for its degradation, the nuclear pool of mDpy-30 would be lost at a slower rate relative to the cytoplasmic/membrane pool. Future experiments would be needed to distinguish between these possibilities. (E) The ratio of trimethylated H3K4 (H3K4me3) to total H3 in HeLa cells treated with a nontargeting control or mDpy-30 siRNAs. Despite the modest knockdown of nuclear mDpy-30 48 h after siRNA transfection, we were able to detect a great reduction of H3K4 trimethylation (by 80% for siRNA1 and by 70% for siRNA2). (F) The protein levels of Ash2L and RbBP5 in HeLa cells treated with a nontargeting control or mDpy-30 siRNAs. Knockdown of mDpy-30 also led to a reduced level of Ash2L. Given the well-described requirement of Ash2L in controlling the H3K4MT activity (Dou et al. 2006. Nat. Struct. Mol. Biol. 13:713–719; Steward et al. 2006. Nat. Struct. Mol. Biol. 13:852–854), this finding raises the possibility that one mechanism for mDpy-30 to modulate H3K4 trimethylation is via affecting the level of Ash2L protein. (D–F) Error bars indicate the standard deviation of the values obtained from independent experiments. Bar, 10 µm.