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CK1-/gish regulates Rab11  
effector Sec15
As sec15IR exhibited effects on Rab11 localization and trichome 
formation, we analyzed the effect of gishIR on endogenous Sec15. 
In 32–34-h APF wings, Sec15 was observed in a punctate distri-
bution in the prehair, whereas apical Sec15 was mislocalized in 
gishIR tissue (Fig. 8, A–A). Furthermore, large apical patches 
of aggregated vesicles (dependent on exocyst function) have 
been reported in yeast, Drosophila epithelia, and mammalian 
cells upon Sec15GFP expression (Salminen and Novick, 1989;  
Zhang et al., 2004; Guichard et al., 2010). Thus, as an assay  
for Sec15GFP localization/function, we analyzed the formation  
of these large puncta in pupal wing cells (Fig. 8, B, B, and E,  
quantification). Strikingly, in gishIR cells, we observed an overall 

We therefore analyzed the effect of reducing Sec15 function on 
trichome development. To circumvent early lethality, we initiated 
expression of Sec15IR in third instar larval development. Sec15IR 
induced defects in trichome development, similarly to Rab11 
and Nuf, and, strikingly, caused an accumulation of Rab11 (see 
also Jafar-Nejad et al., 2005; Langevin et al., 2005) away from 
the base of the trichome across the cell (Fig. 7, compare E with 
F–F). Accumulated Rab11 and defective trichome formation in 
the context of Sec15 knockdown, in conjunction with the Rab11 
and Nuf phenotypes displaying missing and malformed prehairs, 
reveal (a) a requirement for Rab11–Nuf–Sec15 trafficking in tri-
chome formation and (b) a requirement for the Sec15–exocyst 
complex in localized trafficking of nucleation activity through the 
Rab11 recycling endosome to nucleation sites.

Figure 8.  CK1-/gish regulates Rab11 effector Sec15GFP. (A–A) Endogenous Sec15 (green and monochrome) is reduced in apical gishIR tissue (blue; 
yellow lines mark clone border). (B–C) nub-gal4 UAS-gishIR disrupts Sec15GFP aggregates in 30-h APF pupal wings (C and C) compared with nub-gal4 
control tissue (B and B; Fmi in magenta marks the membrane). (D and D) The mwh1-null allele has no effect on Sec15GFP aggregates. (E) Quantification 
of the mean number of Sec15GFP puncta per cell. Error bars indicate SDs; unpaired t testes were performed on three independent animals (**, P < 0.01). 
(F and F) nub-Gal4 UAS-Sec15GFP expression in 30-h APF wings reveals large punctate colocalization of Sec15GFP and Rab11 (blue and monochrome in 
F and F). (G and G) nub-Gal4 coexpression of UAS-Sec15GFP and UAS-gishIR reveals dissociation of both Sec15GFP and Rab11 (blue and monochrome 
in G and G). Bars, 10 µm.
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necessary to restrict the nucleation machinery to a central sub-
domain (Adler, 2002). The function of CK1-/gish in polarized 
vesicle trafficking provides a mechanism for refining a trichome 
to a single position.

Gish is localized to the cell periphery and the prehair 
base. This localization is consistent with a requirement for 
CK1-/gish in targeting nucleation activity to that region, as 
we have identified ectopic trichome nucleation as the primary 
defect. Moreover, our data implicate vesicle trafficking, as ge-
netic alteration of Rab11 or effectors (nuf and Sec15) resulted 
in lost and/or malformed trichomes. Collectively, these data 
support a model that targeted membrane recycling through 
Rab11, Nuf, and Sec15 is required to build a trichome (Fig. 9, 
compare A and B), and spatial regulation of this trafficking by 
CK1-/gish is required to counteract lateral membrane local-
ization of nucleation activity and ectopic trichome formation 
(Fig. 9, A and C). A similar model exists for polarized growth 
in yeast (e.g., bud growth), in which uptake and recycling is a 
mechanism to balance cdc42 lateral diffusion (Marco et al., 
2007; Slaughter et al., 2009).

CK1-/gish coordinates membrane  
recycling through Rab11–Nuf–Sec15 
vesicle trafficking
Our data provide evidence that Rab11–Nuf–Sec15 trafficking 
promotes trichome formation. Importantly, this study sup-
ports that CK1-/Gish regulates localized actin nucleation  
by directing Rab11–Nuf–Sec15-mediated vesicle trafficking  
between the recycling endosome and a distinct region of the 
membrane. Evidence for polarized recycling includes that 
(a) Sec15IR tissue displays trichome malformation in the 
presence of accumulated Rab11 vesicles away from the tri-
chome base (reduced vesicle tethering and fusion can result 
in vesicle accumulation in the cell) and (b) dissociation of 

dissociation of these large puncta (Fig. 8, C, C, and E; and 
Fig. S4, H–I), whereas mwh-null wings resembled the control  
(Fig. 8, D–E). Rab11 colocalized with Sec15GFP as pre-
viously reported (Zhang et al., 2004; Jafar-Nejad et al., 2005; 
Guichard et al., 2010), supporting that these structures were  
recycling vesicles trafficking to the plasma membrane (Fig. 8, 
F and F). Sec15GFP and Rab11 were dissociated by gishIR  
(Fig. 8, G and G). Collectively, our data suggest that CK1-/gish 
specifically regulates Rab11–Nuf–Sec15 vesicle localization 
and polarized trafficking between the recycling endosome and 
the plasma membrane.

Discussion
CK1-/gish regulates membrane  
trafficking to coordinate cell  
and tissue morphogenesis
Membrane trafficking is a key mechanism during morphogene-
sis and cell polarization (Lecuit, 2003; Mellman and Nelson, 
2008). Studies in Drosophila have established a requirement for 
trafficking in core PCP protein localization, trichome orienta-
tion, and morphogenesis (Shimada et al., 2006; Strutt and Strutt, 
2008; Fricke et al., 2009; Mottola et al., 2010; Pataki et al., 
2010; Purvanov et al., 2010). Membrane trafficking has also 
been associated with PCP establishment in cell packing (Classen 
et al., 2005) and in vertebrate morphogenesis during cilia for-
mation (Park et al., 1994; Gray et al., 2009). In the Drosophila 
wing, the core PCP proteins are required for the formation of a 
single trichome at the distal cell vertex, but these proteins are 
found along the entire distal (Fz/Dsh) and proximal (Stbm–Van 
Gogh/Prickle) cell sides (Adler, 2002). It is unclear how tri-
chomes are restricted to one position within a broader PCP do-
main. It is likely that proteins, such as Fz, broadly define prehair 
formation and, within that domain, recruit the refinement proteins 

Figure 9.  Model of Gish/Rab11 vesicle trafficking during tri-
chome formation. (A) Model of gish-mediated vesicle traffick-
ing during trichome formation. During prehair formation, two 
systems exist along orthogonal axes: (1) proximally enriched 
Mwh restricts actin nucleation along the proximal–distal axis, 
and (2) Gish directs the polarized trafficking and enrichment of 
Rab11 endosomes (and derived vesicles) to the prehair. Target-
ing of vesicle recycling restricts actin nucleation to a single site 
within the distal cell vertex. Polarized vesicle recycling to the 
proximity of the prehair base provides a mechanism whereby 
nucleation (yellow) is prevented from diffusing laterally, re-
sulting in multiple trichomes. (B) Loss of Rab11–Nuf–Sec15 
function results in reduced, absent, or abnormal trichome for-
mation. (C) In gish mutant cells, focused Rab11–Nuf–Sec15 
recycling is disrupted, resulting in diffuse membrane traffick-
ing of nucleation activity and multiple trichome formation.  
EE, early endosome; RE, recycling endosomes.
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Adler, 1993; Strutt and Warrington, 2008; Yan et al., 2008). 
Mwh is enriched proximally, and a model has been proposed 
whereby prehair initiation is restricted to the distal cell region 
by the proximal repression of Mwh (and promoted by Fz in the 
distal domain). Taking these observations together with our 
data regarding the relationship of mwh and CK1-/gish, the 
restriction of prehair initiation requires two parallel mecha-
nisms in orthogonal axes: (1) prehair initiation is restricted by 
the gradient of Mwh along the PD axis (e.g., wing) of the cell 
and (2) the tight restriction of Fz-directed trichome nucleation 
along a second axis of refinement by CK1-/gish (Fig. 9). This 
model is supported by both genetic and cell biological data: 
(a) analyses of CK1-/gish and mwh LOF reveal phenotypic 
differences—the initial prehair phenotype of CK1-/gish is 
restricted to the distal cell region and results in multiple, dis-
tally oriented trichomes, whereas the mwh phenotype is first 
observed as excess actin filaments over the entire apical cell 
cortex and results in multiple, randomly oriented trichomes 
(Strutt and Warrington, 2008), (b) gishIR strongly enhances the 
mwh-null phenotype, indicative of two genetically indepen-
dent pathways, and (c) CK1-/gish is required for Rab11 lo-
calization in the proximity of the developing prehair, whereas 
mwh has no effect on Rab11 (or Sec15GFP). Collectively, 
these data imply that these proteins perform two independent 
functions in the cell that converge to restrict trichome forma-
tion to a single site. In support of this model, our data indicate 
that excess of either of these proteins can partially suppress 
the defects associated with the loss of the other. Thus, we sus-
pect a failure to focus trichome nucleation activity to the distal 
cell vertex by gish LOF can be corrected by increasing Mwh 
levels to repress actin nucleation/polymerization by an inde-
pendent mechanism.

In summary, we define a novel mechanism by which 
trichome formation is restricted to a single domain in epithe-
lial cells. These data support the model that CK1- kinases 
can regulate cellular morphogenesis through controlling the 
localization of Rab11 vesicle recycling. Our study has identi-
fied parallels between Drosophila and yeast CK1- in cellular 
morphogenesis, supporting a conserved mechanism of action.  
Collectively, our findings reveal that an independent mechanism of 
CK1-–regulated vesicle trafficking converges to refine Fz/PCP- 
directed morphogenesis.

Materials and methods
Fly stocks
Drosophila experiments were performed at 25°C unless otherwise indi-
cated. Deficiency collection stocks used in the modifier screen were  
obtained from Exelixis, Szeged, and Bloomington Stock centers. Pheno-
typic analysis was performed on genes isolated in the modifier screen 
through transgenic UAS-RNAi flies obtained from the Vienna Drosophila 
RNAi Center (Dietzl et al., 2007). The following alleles were used in this study 
and obtained from the Bloomington Stock Center: Drok2, zip1, gishe01759, 
gishspider-GFP, mwh1, and scar37 (described in Flybase). wsp3 was a gift from  
E.D. Schejter (Weizmann Institute of Science, Rehovot, Israel; Ben-Yaacov  
et al., 2001). gishe01759 is a transposon insertion allele and has been charac-
terized as a strong hypomorphic mutation (Jia et al., 2005). gishe01759 was  
recombined onto an FRT82B chromosome, and mitotic clones of FRT82B-
gishe01759 were generated via the FLP/FRT system (Xu and Rubin, 1993). 
Clones were unmarked or marked with the forked mutation in adults or 
marked by the absence of -galactosidase in pupal tissue. gishspider-GFP is a  

Rab11–Nuf–Sec15 from the prehair in gishIR cells is asso-
ciated with multiple trichomes. These results suggest that 
polarized and focused membrane delivery of a nucleation 
factors may be disrupted. Interestingly, knockdown of the 
Arp2/3 nucleation machinery or regulators, such as Wasp, re-
sulted in multiple trichomes (Fig. S5, G–I; Fricke et al., 2009) 
and can genetically enhance the gishIR phenotype (Fig. S5, 
J–M, quantification). CK1-/Gish may promote delivery of 
Rab11–Nuf–Sec15 recycling vesicles carrying Arp2/3 activ-
ity to the prehair. Further experiments are needed to explore 
the relationship between localized Rab11 trafficking and the 
branched nucleation machinery.

As Gish is associated with the base of developing tri-
chomes, it is possible that CK1-/gish, in analogy to the yeast 
homologue Yck2p, is localized to the proximal prehair mem-
brane in an area of membrane deposition. Such localization 
suggests Gish could regulate localized trafficking by tethering 
Rab11 vesicles to the plasma membrane through the Sec15–
exocyst complex. As in other contexts, Rab11 and Sec15 are 
functionally linked on vesicles en route from the recycling 
endosome to the plasma membrane. As gish reduction mis
localized endogenous Rab11–Nuf–Sec15 and dissociated the 
aggregated Sec15GFP and Rab11 colocalization pattern (but had 
no effect on alternative trafficking compartments, such as the 
Rab5 early endosome), this suggests CK1-/gish is required at 
a late vesicle recycling step. Although coimmunoprecipitation 
experiments with Myc-Gish failed to detect an association with 
Rab11, Nuf, or Sec15 (unpublished data), the potential phos-
phorylation targets may be binding partners or associate through 
weak/transient interactions with Gish.

Alternatively, CK1-/gish may regulate polarized vesicle 
trafficking through an effect on the cytoskeleton, associated 
motor proteins, or adaptors. As mentioned, the Rab11 effector 
Nuf can bind the motor protein dynein and link Rab11 endo-
somal structures to microtubules (Riggs et al., 2007; Horgan 
et al., 2010). A recent study showed that Nuf phosphorylation 
by IKK- regulates trafficking of Rab11 vesicles along devel-
oping bristles (Otani et al., 2011). Thus, one possibility is that 
CK1-/gish may act through Nuf to affect Rab11 trafficking. 
We have observed a correlation between Rab11 localization and 
microtubule networks within the prehair (unpublished data). 
Thus, Rab11 vesicles may require microtubules for localization, 
as previously reported in other contexts (Riggs et al., 2007). 
Consistent with this notion, microtubule depolymerization with 
nocodazole dissociated Sec15 vesicle aggregates in mammalian 
cells (Zhang et al., 2004). Intriguingly, disrupting microtubules 
resulted in multiple trichomes in Drosophila (Turner and Adler, 
1998). Further analysis is necessary to address the role of gish 
on microtubule-based vesicle trafficking in the context of tri-
chome formation.

CK1-/gish and mwh regulate distinct 
steps in trichome morphogenesis
PCP studies have identified effectors required to restrict tri-
chomes, such as fuzzy, inturned, frtz, and mwh (Adler, 2002). 
Based on genetic epistasis and localization experiments, mwh 
is downstream as a modulator of the cytoskeleton (Wong and 

 on July 26, 2017
jcb.rupress.org

D
ow

nloaded from
 

http://jcb.rupress.org/


JCB • VOLUME 196 • NUMBER 5 • 2012� 618

Antibodies
Rabbit anti–-galactosidase (1:1,000; European Molecular Biology Labo-
ratory), rat anti-Rab11 (Dollar et al., 2002), rabbit anti-Rab5 (1:1,000; 
ab31261; Abcam), guinea pig anti-Hrs (Lloyd et al., 2002), guinea pig 
anti-Sec15 (1:500; Mehta et al., 2005), rabbit anti–Lava lamp (Sisson 
et al., 2000), mouse anti-Fmi (1:10; Developmental Studies Hybridoma 
Bank), rabbit anti-MyoV (1:1,000; Li et al., 2007), rabbit anti-dRip11 
(1:1,000; Li et al., 2007), rabbit anti-Sec5 (Murthy et al., 2003), rabbit 
anti-Nuf (1:1,000; Riggs et al., 2003), mouse anti-Myc (1:250; 9E10; 
Santa Cruz Biotechnology, Inc.), mouse anti-En (1:2; Developmental Stud-
ies Hybridoma Bank), rabbit anti-Zip (Liu et al., 2008), and rabbit anti-GFP 
(1:1,000; Invitrogen). Rhodamine-phalloidin was obtained from Invitro-
gen. All fluorophore-conjugated secondary antibodies, including Cy5, 
TRITC, and FITC, were used at 1:200 and were obtained from Jackson 
ImmunoResearch Laboratories, Inc. Donkey anti–rabbit 10-nm gold was 
used at 1:200 (ab27235; Abcam).

Image analysis
Cell area measurements were performed using ImageJ. The apical cell 
periphery was identified by Fmi staining (overlapping apical adherens 
junctions), and basolateral area measurements were identified by rhodamine- 
phalloidin staining of cortical actin basal to nuclear level (Hoechst 33342; 
Thermo Fisher Scientific). Individual cell membranes were traced using 
the polygon drawing tool, and measurements were determined. Measure-
ments were performed on ≥30 cells for control and adjacent mutant 
tissue (32–34 h APF). The percent increase of the area of mutant tissue 
was calculated relative to adjacent control tissue in the same wing. Means 
and SDs were calculated from at least three wings from individual ani-
mals. Sec15GFP puncta number per cell was determined using the particle 
analysis function of ImageJ. Three independent wings were analyzed, and 
the number of Sec15GFP-positive cells in each field was used to determine 
the mean number of puncta per cell.

Live imaging of pupal notum
White pupae (0 h APF) of the indicated genotypes were collected into sep-
arate vials, aged to 36 or 38 h APF at 25°C, and mounted for imaging as 
previously described (Bellaïche et al., 2001). In brief, aged pupae were 
fixed on slides with double-sided tape in between stacks of four coverslips. 
Pupal cases were partially removed to expose head and notum. A drop of 
halocarbon oil (Sigma-Aldrich) was placed onto the bottom of a cover slide 
and gently applied to the notum, supported by the adjacent stacks of cov-
erslips. Images were acquired at room temperature using a confocal micro-
scope (63× oil immersion, 1.4 NA; SP5 DMI; Leica) with LAS AF (Leica) 
software. A single confocal plane (1 µm) was taken at 6-s intervals for a 
total of 2 min.

Dextran uptake assay
The dextran uptake assay was performed as previously described (Entchev 
et al., 2000) with some modifications: third-instar larvae were partially dis-
sected in S2 medium supplemented with 10% FBS to expose wing discs. 
The medium was replaced with one containing 5 mg/ml Texas red dextran 
(lysine fixable; 3,000 molecular weight; Invitrogen) and pulsed for 10 min 
at 25°C. The samples were washed three times with ice-cold S2 medium 
(with 10% FBS) and then incubated at 25°C for 20 min (chase) to visualize 
uptake and the early endosomal compartment. The samples were fixed for 
20 min in 4% formaldehyde in PBS and washed three times in PBS with 
0.1% Triton X-100. Mounting was in 30% glycerol (Mowiol and 2.5% 
Dabco). Images were acquired at room temperature using a confocal micro-
scope (63×, 1.4 NA; LSM 510 Meta) using LSM software. Images were 
processed with ImageJ and Photoshop CS4.

EM
White pupae (0 h APF) of the indicated genotypes were isolated and 
staged to 32 h APF, and pupal wings were dissected as described in 
Immunohistochemistry and histology. Wings were fixed in 3% glutar
aldehyde and then in 1% osmium tetroxide. Samples were dehydrated in 
a graded ethanol series (50, 70, 90, and 100%) and propylene oxide 
and embedded in Epon resin. Ultrathin sections were made along oblique 
angles to the apical epithelial surface of pupal wing epithelia. Immuno-EM 
sample preparation was as previously described (Shimada et al., 2006). 
In brief, white pupae (0 h APF) of the indicated genotype was isolated, 
staged to 32 h APF, dissected in PBS, and fixed for 1 h in periodate-lysine-
paraformaldehyde fix. Pupae were washed three times in PBS. Blocking 
was performed by incubation for 1 h in glycine-PBS supplemented with 
4% normal donkey serum, 0.1% saponin, and 0.05% Triton X-100. The 
primary antibody was diluted in blocking solution and incubated overnight 

protein trap insertion within the gish locus, generating a Gish-GFP fusion 
protein (Morin et al., 2001; Frescas et al., 2006). Overexpression of cDNA 
transgenes or RNAi (IR) was performed using the Gal4/UAS system (Brand 
and Perrimon, 1993). The Gal4 expression drivers used were as follows: 
sev-Gal4, en-Gal4, nub-Gal4, and dpp-Gal4. FLP-out expression clones 
of the indicated genotypes were performed using hs-FLP; actin>y>Gal4, 
UAS-GFP (Struhl and Basler, 1993). UAS-gishIR (v26003), UAS-mwhIR 
(v41514), UAS-Rab11IR (v22198), UAS-Sec15IR (v105126), and UAS-
PTENIR (v35731) were obtained from the Vienna Drosophila RNAi Center 
collection. Where indicated, UAS-dicer2 was included with UAS-IR expres-
sion to increase RNAi efficiency (Bloomington Stock Center). The following 
transgenes were also used: UAS-sqhE20E21 (Winter et al., 2001), UAS-mwh 
(Yan et al., 2008), UAS-Sec15GFP (Jafar-Nejad et al., 2005), UAS-Rab11IR 
(Satoh et al., 2005), UAS-YFP-RabGTPases (including wild type, dominant 
negative, and constitutively active; Zhang et al., 2007), arm-fz-GFP (Strutt, 
2001), actin-stbm-YFP (Strutt et al., 2002), and UAS-ketteMyr (Bogdan and 
Klämbt, 2003). Temperature shifting experiments were performed via an 
18–29°C shift during the third-instar larval stage using the tub-Gal80ts trans-
gene (Bloomington Stock Center).

Molecular cloning
The following transgenes were generated from the Berkeley Drosophila 
Geneome Project gish cDNA clone LD04357: UAS-gishIR2 was created by 
PCR amplifying a cDNA sequence (independent of the Vienna Drosophila 
RNAi Center probe sequence; Fig. S1 A) into a modified pWizDir vector 
(Jenny and Mlodzik, 2008). The PCR primers used to generate gishIR2 were  
(including restriction sites) forward, 5-ATCCCTAGGCTCCACCGGATCG
AATATGTT-3, and reverse, 5-GCTGGATCCCACCGATTTTTTGATATCTCT-3.  
UAS-myc-gishWT and UAS-myc-gishC were PCR isolated and correspond 
to transcripts gish-RB and gish-RF, respectively (described in Flybase). The 
PCR primers used to generate these transcripts were (including restriction 
sites and linkers) forward primer (common for gish-RB and gish-RF), 5-ATC-
GAATTCGGCGGCATGCAGCGACGAGAACGGCAA-3, reverse (gish-RB  
only), 5-GCTCTCGAGTCATTTTTGGCGCGTCGATTT-3, and reverse (gish-RF  
only), 5-GCTCTCGAGCTATGTCTCCATTGTCTTCCC-3. These PCR prod-
ucts were cloned into pCS2-Myc, and myc-gish was subcloned into the 
pUAST vector to generate transgenic flies. myc-gishKD (D187N substitution)  
was generated by site-directed mutagenesis (Agilent Technologies) of 
pCS2-myc-gishWT followed by subcloning of myc-gishKD into pUAST. The PCR  
primers used to generate the D187N substitution were forward, 5-GGC
ACTTAATATATAGGAATGTGAAACCAGAGAAC-3, and complementary 
reverse, 5-GTTCTCTGGTTTCACATTCCTATATATTAAGTGCC-3. Substituted 
nucleotides are in bold. The gish kinase-dead D187N mutation is based on 
the comparable Xenopus laevis CK1- mutant on a conserved residue in the 
ATPase domain (Davidson et al., 2005).

Immunohistochemistry and histology
For analysis of wing trichomes, adult wings were removed, incubated in 
wash buffer (PBS and 0.1% Triton X-100), and mounted on a slide in 80% 
glycerol in PBS. To analyze trichomes in adult nota (dorsal thorax), flies 
were partially dissected, incubated at 95°C in 10% KOH for 10 min to 
clear fat tissue, washed (PBS and 0.1% Triton X-100), and then placed in 
80% glycerol in PBS. Nota were then fully dissected and mounted on a 
slide in 80% glycerol in PBS. Adult eye section analyses were performed 
as previously described (Gaengel and Mlodzik, 2008). In brief, fly heads 
were fixed in 2% glutaraldehyde in PBS and treated with 2% osmium te-
troxide. Samples were dehydrated in a graded ethanol series (50, 70, 90, 
and 100%) and propylene oxide and embedded in Durcupan resin. Tan-
gential sections were made and mounted on a slide using DPX mounting 
medium. Adult wings, nota, and eye sections were imaged at room tem-
perature on a microscope (Axioplan; Carl Zeiss). Images were acquired 
with a camera (Zeiss AxioCam Color type 412–312; Carl Zeiss) and  
AxioCam software. For analysis of pupal wings, white pupae were collected 
(0 h APF) and aged at 25°C. Dissections were performed as follows: in 
brief, pupae were immobilized on double-sided tape, removed from the 
pupal case, and placed into PBS, in which pupae were partially dissected 
to remove fat tissue and then fixed in 4% formaldehyde in PBS and washed 
three times (PBS and 0.1% Triton X-100). Wing membranes were removed, 
and tissue was incubated in wash buffer containing 10% normal goat 
serum overnight for primary antibody (4°C), washed three times with PBS, 
and then incubated with secondary for 1 h (25°C). Wings were washed 
three times with PBS and mounted in glycerol/PBS supplemented with 1% 
N-propyl gallate. Pupal wing images were acquired at room temperature 
using a confocal microscope (63×, 1.4 NA; LSM 510 Meta; Carl Zeiss) 
using LSM software (Carl Zeiss). Images were processed with ImageJ 
(National Institutes of Health) and Photoshop (CS4; Adobe).
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at 4°C. Pupae were washed five times in glycine-PBS and then incubated 
for 3 h with secondary antibody and washed five times. All subsequent 
steps were as described in the previous paragraph for standard TEM. The 
electron microscope used in all cases was an H-7650 (Hitachi) with MaxIm 
DL software (Diffraction Ltd.).

Immunoblotting
Third-instar wing imaginal discs (50 discs/genotype) were dissected and 
placed directly into SDS sample buffer to dissolve the tissue. These samples 
were boiled at 95°C for 10 min and then centrifuged at 14,000 rpm for 
10 min. The supernatant was run on a 10% SDS-PAGE gel and transferred 
to polyvinylidene fluoride membrane (Millipore). The membranes were 
probed with rabbit antiphospho-MRLC (Ser19; Cell Signaling Technology). 
ECL Plus was used for detection (GE Healthcare).

Cell culture and siRNA
293T cells were cultured in DME supplemented with 10% FBS and main-
tained in 5% CO2 at 37°C. Cells were transfected with siRNA against 
human CSNK1G1, CSNK1G2, and CSNK1G3 or negative control siRNA 
(Silencer Select siRNA and negative control #1; Invitrogen). Transfection 
was performed using siPORT NeoFX (Invitrogen). After 48 h, cells were 
transfected with pEGFP-Sec15GFP (0.4 µg per well; 8-well Laboratory-Tek 
glass chamber slide; a gift from C.A. Mitchell, Monash University, Clayton  
Victoria, Australia; Zhang et al., 2004) with the transfection reagent 
(FuGENE HD; Promega). After 24 h, cells were fixed with 4% parafor-
maldehyde, washed in PBS (0.1% Triton X-100), and mounted with Vecta-
shield (including DAPI; Vector Laboratories). Images were acquired using a 
confocal microscope (63×, 1.4 NA; LSM 510 Meta) using LSM software. 
Images were processed with ImageJ and Photoshop CS4.

Online supplemental material
Fig. S1 shows in vivo RNAi strategy used for gish knockdown and the 
requirement for CK1-/Gish kinase activity and membrane association in 
trichome formation and Rab11 localization. Fig. S2 displays data char-
acterizing the apical membrane expansion phenotype of gishIR. Fig. S3 
displays data supporting a PCP-independent role for CK1-/gish in tri-
chome morphogenesis. Fig. S4 shows control stainings of additional traf-
ficking compartments and Rab11-associated proteins. Fig. S5 shows the 
effect of gish on YFP-Rab11CA localization, YFP-Rab11WT localization in  
the context of trichome formation by immuno-EM, Rab11IR knockdown 
of endogenous Rab11, and genetic data implicating Arp2/3 nuclea-
tors in gish regulation of trichome morphogenesis. Video 1 shows YFP-
Rab11WT trafficking within initiating prehair in a 36-h APF notum. Video 2 
shows diffuse localization of YFP-Rab11WT with gishIR coexpression in a 
36-h APF notum. Video 3 shows YFP-Rab11WT trafficking within elongat-
ing prehair in a 38-h APF notum. Video 4 shows diffuse YFP-Rab11WT 
trafficking with gishIR coexpression during prehair elongating in a 38-h 
APF notum. Online supplemental material is available at http://www.jcb 
.org/cgi/content/full/jcb.201107137/DC1.
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