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in mitotic cells. More importantly, the kinetochoreassociated 
signals are restored only by expressing the siRNAresistant 
wildtype BubR1 but not a BubR1 kinaseinactive (KD) point 
mutant (Fig. 1). To our knowledge, this is the first direct evi
dence to support the kinase activity of BubR1 in human cells. 
Furthermore, the kinetochoreassociated BubR1 autophos
phorylation signals in cells also depend on the presence of 
CENPE (Fig. S2), just as in the previous results that CENPE 
can stimulate BubR1 kinase activity in vitro (Mao et al., 
2003; Weaver et al., 2003) and in Xenopus egg extracts (Mao 
et al., 2003).

results could be attributed to inefficient knockdown or depletion of 
endogenous BubR1 (Chen, 2002) or different experimental ap
proaches, as well as different systems, to examine subtle pheno
typic differences.

In this study, we have identified a CENPE–dependent 
BubR1 autophosphorylation site using purified components 
and MS. This site has also been identified in human cells  
using systematic phosphorylation analysis of mitotic pro
tein complexes (Hegemann et al., 2011). Using a specific 
phosphoantibody against this site, we show that kinetochore 
associated signals are eliminated by BubR1 depletion (siRNA) 

Figure 6. The polar chromosome phenotype in CENP-E–depleted cells can be rescued by expression of a phosphomimetic BubR1 mutant. (A) Schematic 
representation of transfection, chemical inhibitor treatment, and live-cell imaging protocol. (B–D) Representative still frames of live-cell microscopy of 
H2B-EYFP cells transfected without (B) or with CENP-E siRNA and mCherry (C) or mCherry-BubR1T608E (D) expression vectors. Arrows point to polar 
chromosome outside the metaphase plate. The transfected cells were identified by mCherry before live-cell imaging. In C, all 11 filmed cells had polar 
chromosomes by the end of the filming (300 min). In D, 9 out of 10 filmed cells had all chromosomes aligned at the metaphase plate. Bar, 10 µm.  
(E–H) Expression of the phosphomimetic BubR1T608E mutant rescues polar chromosome phenotype in CENP-E–depleted cells. Indirect immunofluorescence analy-
sis of CENP-E (E), mCherry-BubR1T608E (F), ACA (G), and DNA (H). Arrows point to polar chromosomes outside the metaphase plate. (I) The percentage 
of mitotic cells with or without polar chromosomes analyzed in cells transfected with CENP-E siRNA and with or without the mCherry-BubR1T608 construct 
as indicated (± SD; ≥50 cells each from two repeated experiments were counted). Bars, 10 µm.

 on July 27, 2017
jcb.rupress.org

D
ow

nloaded from
 



JCB • VOLUME 198 • NUMBER 2 • 2012 214

duration of mitotic arrest induced by nocodazole in comparison 
with cells having wildtype BubR1 (Fig. 3 D). Furthermore, 
similar to what has been shown in the absence of CENPE 
(Weaver et al., 2003), unattached kinetochores in cells express
ing the nonphosphorylatable BubR1 mutant have reduced levels 
of checkpoint components Mad1 and Mad2 (Fig. 3, A–C; and 
Fig. S4). Therefore, the CENPE–dependent BubR1 kinase 
activity and BubR1 autophosphorylation are essential for a full
strength mitotic checkpoint to prevent chromosome missegre
gation when there are only one or a few unattached kinetochores 
(Fig. 7 A). A study using BubR1 conditional knockout cells and 
BubR1 domain mutants has suggested that a prolonged mitotic 
checkpoint signaling requires BubR1 kinase activity at kineto
chores (Malureanu et al., 2009). The CENPE–dependent BubR1 

Livecell imaging analysis has revealed that BubR1 auto
phosphorylation is not only important for metaphase chromo
some alignment (for details see next Discussion section) but 
also a fullstrength mitotic checkpoint. Cells harboring the non
phosphorylatable BubR1 mutant spend a similar time in mitosis 
to that of cells having wildtype BubR1, suggesting that BubR1 
autophosphorylation is not required for mitotic timing and the 
basic mitotic checkpoint strength when there are lots of un
attached kinetochores in a short time frame. However, a majority 
of those cells with the nonphosphorylatable BubR1 mutant ini
tiate anaphase onset with polar chromosomes (Fig. 2), pheno
copying what has been shown in cells without CENPE function 
(Putkey et al., 2002; Weaver et al., 2003, 2007). Cells express
ing the nonphosphorylatable BubR1 mutant also have a shorter 

Figure 7. A model for the role of CENP-E–dependent BubR1 autophosphorylation at the kinetochore. (A) Incorrect kinetochore–microtubule attachments 
(purple chromosomes) trigger Aurora B–mediated phosphorylation of the KMN network (represented by the Ndc80 complex in the cartoon) and CENP-E, 
resulting in destabilization of kinetochore microtubules. At unattached kinetochores, CENP-E stimulates BubR1 kinase activity and its autophosphoryla-
tion. Mad1 and Mad2 are also recruited onto unattached kinetochore to generate mitotic checkpoint signaling. At attached bioriented kinetochores (red 
chromosomes), spindle microtubule capture by CENP-E silences BubR1 kinase activity and recruits Phosphatase 1 (PP1) to outer kinetochores. The nonphos-
phorylated form of BubR1 reduces Aurora B–mediated Ndc80 phosphorylation and Mad1–Mad2 association at kinetochores. These coordinated events 
result in dephosphorylation of key components at the kinetochore–microtubule interface (e.g., Ndc80), leading to stable attachment upon biorientation and 
separation of the inner centromeric Aurora B from outer kinetochore substrates, as well as silencing the mitotic checkpoint signaling. (B) During the forma-
tion of the bipolar spindle upon release from monastrol treatment, a large number of attachment errors needs to be corrected. In the absence of CENP-E, 
the nonphosphorylated form of endogenous BubR1 resides on incorrectly attached kinetochores, which reduces Aurora B–mediated Ndc80 phosphoryla-
tion, leading to the persistent existence of polar chromosomes. Expressing a phosphomimetic BubR1 mutant to replace some of the nonphosphorylated 
endogenous BubR1 at kinetochores helps to correct misattachments, although it takes a much longer time for those cells to achieve metaphase chromosome 
alignment. MT, microtubule; P, phosphorylated.
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at the kinetochores are influenced by the balance of the phos
phomimetic BubR1 mutant and the endogenous nonphosphory
lated form of BubR1 in the absence of CENPE to achieve correct 
kinetochore–microtubule attachment. And second, CENPE could 
play an important role in achieving metaphase chromosome 
alignment. CENPE has been proposed to stabilize microtubule 
capture at kinetochores because most CENPE–free aligned 
kinetochores bound only half the normal number of micro
tubules, and polar chromosomes have no obvious attached micro
tubules in primary mouse fibroblasts (Putkey et al., 2002). It has 
also been proposed that congression of polar chromosomes 
to the metaphase plate can be powered by the processive, plus 
end–directed kinetochore motor CENPE (Kim et al., 2008; 
Yardimci et al., 2008) alongside kinetochore fibers attached to 
other already bioriented chromosomes (Kapoor et al., 2006).

Materials and methods
In vitro kinase assay and MS
Recombinant full-length Xenopus BubR1 was expressed in Escherichia coli 
with a His tag at the N terminus and purified over an Ni–nitrilotriacetic 
acid column (QIAGEN) following the manufacturer’s protocols. Recombi-
nant Xenopus CENP-E protein was produced as previously described 
(Abrieu et al., 2000). In summary, the full-length CENP-E was expressed in 
Hi5 insect cells using the expression system (Bac-to-Bac; Gibco/Life Tech-
nologies). The recombinant bacmids were produced as directed by the 
manufacturer. The CENP-E protein was then purified from whole-cell extracts 
upon being frozen in liquid nitrogen and thawed, through a two-step ion-
exchange chromatography, a HiTrap SP Sepharose ion-exchange column, 
and a Source 15Q column. The protein was eluted using a linear gradient 
from 100 mM to 1 M KCl in ion-exchange chromatography buffer (10 mM 
Pipes, pH 6.8, 0.5 mM EGTA, 2 mM MgCl2, and 50 µM ATP).

Purified BubR1 were incubated with or without CENP-E at room tem-
perature for 30 min with 25 mM Hepes, pH 7.5, 10 mM MgCl2, and 200 µM 
ATP. BubR1 from both reactions were recovered from the SDS-PAGE. The 
gel bands were subjected to liquid chromatography (LC)–MS/MS analysis.

Tissue culture, transfection, and drug treatment
T98G cells were cultured in DME with 10% FBS at 37°C in 5% CO2. 
BubR1 siRNA were purchased from QIAGEN. Transfection was performed 
using HiPerFect (QIAGEN) according to the manufacturer’s instruction.  
In all chromosome alignment analyses, 48 h after transfection, cells were 
treated with monastrol to accumulate mitotic cells for 4 h and released into 
MG132 medium for 1 h. Cells were then fixed and subjected to immuno-
fluorescence analysis. Nocodazole, monastrol, and MG132 (Sigma-Aldrich) 
were added to a final concentration of 100 ng/ml, 100 µM, and 10 µM, 
respectively, or as indicated in figures and/or figure legends.

Immunofluorescence microscopy and live-cell imaging
A synthesized phosphorylated peptide, KPNPED-pT-CDFARAAR-amide, 
was used to raise BubR1 pT608 antibodies in rabbits, and the sera were 
affinity purified (YenZym Antibodies, LLC). The pS55-Hec1 and Mad2 anti-
bodies are provided by J. DeLuca (Colorado State University, Fort Collins, 
CO) and G. Kops (The University Medical Center Utrecht, Utrecht, Nether-
lands), respectively. Other antibodies were obtained from Abcam.

For indirect immunofluorescence, cells grown on poly-l-lysine–coated 
coverslips were washed once with microtubule-stabilizing buffer (MTSB; 
100 mM Pipes, 1 mM EGTA, 1 mM MgSO4, and 30% of glycerol), extracted 
with 0.5% Triton X-100 in MTSB for 1 min, fixed with 4% paraformalde-
hyde in MTSB or cold methanol (20°C) for 10 min, and blocked in TBS 
containing 0.1% Tween 20 and 4% BSA (Sigma-Aldrich) for 1 h. Cover-
slips were subjected to primary antibodies diluted in blocking buffer for 1 h 
and then to FITC or Rhodamine secondary antibodies (Jackson Immuno-
Research Laboratories, Inc.). Cover glasses were mounted with antifade re-
agent with DAPI (ProLong Gold; Molecular Probes). Image acquisition and 
data analysis were performed at room temperature using an inverted 
microscope (IX81; Olympus) with a 60×, NA 1.42 Plan Apochromat oil 
immersion objective lens (Olympus), a monochrome charge-coupled de-
vice camera (Sensicam QE; Cooke Corporation), and the SlideBook software 
package (Olympus). All images in each experiment were collected on the 

kinase activity is also important for the mitotic checkpoint in 
Xenopus egg extracts (Mao et al., 2003), a system known to pro
duce a weak mitotic checkpoint signal to the extent that >9,000 
sperm head nuclei (haploid without sister kinetochores)/ 
microliter are needed to activate the checkpoint (Murray, 1991).

Although the crystal structure of BubR1 kinase has not 
been resolved, superposition of a 3D model structure of BubR1 
kinase generated by comparative modeling using the known 
Bub1 kinase as a template has suggested that these two kinases 
have very similar structures (BolanosGarcia and Blundell, 
2011). One of the particularly intriguing features is the inter
action of the Nterminal extension with the kinase domain, sim
ilar to what has been shown for the activation of Cdks by cyclins 
(Kang et al., 2008). The interaction between BubR1 and CENPE 
and the subsequent BubR1 autophosphorylation could cause a 
structural change of BubR1 and, therefore, influence the func
tional roles of BubR1 at the kinetochore.

The nonphosphorylated form of BubR1  
can reduce levels of Aurora B–mediated 
Ndc80 phosphorylation at attached 
kinetochores upon spindle microtubule 
capture by CENP-E
The current spatial separation model suggests that centromere 
tension produces spatial separation of Aurora B from the kineto
chore substrates, subsequently reduces their phosphorylation, 
and therefore, stabilizes kinetochore–microtubule interactions 
(Lampson and Cheeseman, 2011). KNL1 and CENPE–dependent 
PP1 recruitment at the outer kinetochore has also been sug
gested to reverse Aurora B–mediated phosphorylation of the 
core microtubulebinding proteins (e.g., the Ndc80 complex) 
for stable microtubule capture by chromosomes (Kim et al., 2010; 
Liu et al., 2010; Rosenberg et al., 2011). Here, our findings sup
port another mechanism involved in reducing Aurora B–mediated 
Ndc80 phosphorylation at attached kinetochores to stabilize 
microtubule attachment (Fig. 7 A). CENPE–dependent activa
tion of BubR1 is sensitive to the kinetochore attachment state, 
occurring only on unattached kinetochores (Mao et al., 2003, 
2005). The capture of spindle microtubules by kinetochore
associated motor CENPE silences BubR1 kinase activity 
(Mao et al., 2005). Therefore, the nonphosphorylated form of 
BubR1 residing on aligned kinetochores is able to reduce  
Aurora B–mediated Ndc80 phosphorylation through an unknown 
mechanism, leading to subsequent stable attachment between 
kinetochores and dynamic spindle microtubule ends.

Cells without CENPE, the BubR1 kinase activator, can
not correct attachment errors upon release from monastrol with 
large amounts of syntelic attachments caused by the reduced 
levels of Aurora B–mediated Ndc80 phosphorylation in the 
absence of CENPE–dependent BubR1 autophosphorylation, 
whereas expression of a phosphomimetic BubR1 mutant is able 
to largely rescue the phenotypes (Fig. 6 and Fig. 7 B). However, 
it takes a much longer time for CENPE–depleted cells express
ing the phosphomimetic BubR1 mutant to align all chromosomes 
at the metaphase plate, and a quarter of the cells remain to have 
polar chromosomes. This could be attributed to two possibilities. 
First, the levels of Aurora B–mediated Ndc80 phosphorylation 
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