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Figure 8.  The role of rictor on cell size and cell morphology is cell-autonomous. (A) Schematic representation of the genetic organization of mice homozygous 
for the targeted rictor alleles and mice expressing Cre-recombinase from the L7/Pcp-2 locus. Please note the localization of the primers used to detect 
rictor recombination in single-cell PCR (see Fig. S3). (B) Western blot analysis of cerebellar lysates from adult control and RiPuKOCre/+ mice for rictor and 
PKC (left) and quantification of their mean gray value (normalized to -actin; right). Values for rictor and PKC in controls (ctrl) were set to 100% (black 
bar). Gray bars represent values for rictor and PKC in RiPuKOCre/+ mice. Data represent mean ± SEM from n = 5 mice per genotype. (C) Cross section of 
cerebella stained with antibodies to calbindin (red) and PKC (green). PKC staining is lost in some, but not all Purkinje cells in RiPuKOCre/+ mice because 
of the mosaic recombination of the rictor allele (see Fig. S3). Some of the PKC-negative cells have several primary dendrites, are misaligned, and diverge 
from the perpendicular plain (white arrow). (D) Immunostaining for PKC (red) of biocytin-filled (green) Purkinje cells from control or RiPuKOCre/Cre mice. 
Purkinje cells that are negative for PKC often have more than one primary dendrite (white arrows). (E) Quantification of the Purkinje cell soma size in 
control mice (black bar), in PKC-positive cells (dark gray), and in PKC-negative cells (light gray) from RiPuKOCre/+ mice. Data represent mean ± SEM from 
n = 3 mice for each genotype. (F) Quantification of the Purkinje dendrite diameter in control (black) and PKC-negative cells in RiPuKOCre/+ mice (gray). 
Data represent mean ± SEM from n = 3 mice. (G) Quantification of the number of primary dendrites in biocytin-filled Purkinje cells of control (black) and 
of PKC-negative cells from RiPuKOCre/Cre mice (gray). Numbers derive from n = 38 cells of a total of 5 control mice, and from n = 42 cells of a total of  
7 RiPuKOCre/Cre mice. (H) Cerebellar slice cultures isolated from RiPuKOCre/Cre mice and stained for calbindin and PKC. The white arrows indicate axons. 
The inset shows a high magnification picture of those axons. (I) Quantification of the Purkinje axon diameter in cerebellar slice cultures isolated from control 
mice (black), and PKC-positive (dark gray), and PKC-negative cells (gray) isolated from RiPuKOCre/Cre mice. Data represent mean ± SEM from n = 5 mice 
for each genotype. Statistical analysis used Student’s t test (B and F) or one-way Anova followed by Tukey’s test (E and I): ***, P < 0.001; **, P < 0.01; 
*, P < 0.05. n.s., nonsignificant; P ≥ 0.05. Bars: (H, inset) 10 µm; (C, H, and inset in D) 25 µm; (D) 50 µm.
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Discussion
Germline deletion of rictor in mice causes their death around 
embryonic day 10.5 to 11.5 (Guertin et al., 2006; Shiota et al., 
2006). Here we show that deletion of rictor in brain precursor 
cells does not cause early death, indicating that the embryonic 
lethality in whole-body rictor knockout mice is not due to brain 
abnormalities. We find that RibKO mice have a smaller brain 
and that this is mainly caused by a reduction in cell size. More-
over, we find a strong phenotype in Purkinje cells that affects 
the morphology and connectivity of those neurons, both features 
that might contribute to the motor deficits. Interestingly, a re-
cent publication where exon 3 of rictor was deleted using the 
same nestin-Cre mice linked the phenotype to schizophrenia by 
demonstrating that the knockout mice were impaired in pre-
pulse inhibition without changes in gross motor function (Siuta 
et al., 2010). Although this paper reports an interesting aspect of 
mTORC2 function, the use of the same nestin promoter to drive 
expression of Cre resulted in our hands in a severe phenotype 
that affected motor behavior and all basic synaptic functions 
(mEPSCs and mIPSCs) and that did not allow us to test the mice 
in more elaborated behavioral tasks. We cannot explain the dif-
ference between the phenotypes of the two mouse models; one 
possibility might be that the targeting of exon 3 (Siuta et al., 
2010), instead of both exons 4 and 5 (this paper) results in only 
a partial loss of rictor.

Figure 9.  Altered synaptic properties in Purkinje cells of RiPuKOCre/Cre 
mice. (A and B) Electrophysiological recording of the mean mEPSC fre-
quency in control (black) and PKC-negative Purkinje cells of RiPuKOCre/Cre 
mice (gray) and (C) the mean mEPSC amplitude in those mice. Data rep-
resent mean ± SEM from n = 19 neurons from 5 different control mice 
and n = 19 cells from 8 different RiPuKOCre/Cre mice. (D–F) Measurement 
of the mean frequency (D) and the mean amplitude (E and F) of mIPSCs 
in Purkinje cells from control mice (black), PKC-positive (dark gray), and 
PKC-negative (light gray) cells from RiPuKOCre/Cre mice. Data represent 
mean ± SEM from n = 21 cells from 4 different control mice; n = 25 PKC-
positive cells from 5 RiPuKOCre/Cre mice; and n = 7 PKC-negative cells 
from a total of 3 RiPuKOCre/Cre mice. Statistical analysis used Student’s t test 
(A and C) or one-way Anova followed by Tukey’s test (D and E): **, P < 
0.01; *, P < 0.05.

mTORC2 affects cell size
Rictor has been removed in several other organs including skel-
etal muscle (Bentzinger et al., 2008; Kumar et al., 2008), adipose 
tissue (Cybulski et al., 2009), and kidney (Gödel et al., 2011). In 
all those tissues, the phenotype is rather weak and does not af-
fect organ size. Our work now provides strong evidence that 
deletion of mTORC2 in the entire CNS resulted in a phenotype 
that was already evident at birth and that affected brain size. 
This size difference was also seen upon deletion of rictor in 
Purkinje cells, indicating that this function is cell-autonomous. 
Recent evidence indicates that the morphine-induced decrease 
in the size of dopaminergic neurons in the ventral tegmental area 
also involves mTORC2 and that this cell-autonomous effect is 
rapamycin insensitive (i.e., mTORC1 independent; Mazei-
Robison et al., 2011).

Similar size effects in the brain have been reported in mice 
lacking Akt3/PKB, which is the main Akt isoform expressed 
in the brain (Easton et al., 2005; Tschopp et al., 2005). Although 
RibKO mice show a strong reduction in the phosphorylation of 
Akt at Ser473 and some reduction in phosphorylation at Thr308, 
our biochemical analysis of the mTOR pathway indicates that 
the growth defect is not based on changes in mTORC1 signaling, 
as its two downstream targets 4E-BP and S6K and phosphoryla-
tion of mTOR at its mTORC1 site Ser2448 were not affected. 
Although rictor deletion does not affect growth in most tissues, 
such an effect has been described in Drosophila (Hietakangas 
and Cohen, 2007) and in tumors induced by inactivation of the 
tumor suppressor PTEN (Guertin et al., 2009). Like in our work, 
signaling to mTORC1 was not affected and under normal con-
ditions, and thus low PI3K signaling, the effect of rictor inactiva-
tion on cell growth was rather small or not detectable (Hietakangas 
and Cohen, 2007; Guertin et al., 2009). The observed microceph-
aly in the RibKO mice and the reduced cell size in RiPuKO mice 
might thus be the result of a highly active PI3K pathway in cells 
of the brain. However, we cannot exclude that the additional 
downstream targets of mTORC2, such as SGK1 and PKC iso-
forms, also contribute to the size difference. Such alternative 
explanations are particularly important as our biochemical analy
sis did not reveal changes in the activation of the two Akt tar-
gets FoxO1 and GSK3-.

mTORC2 affects neuron morphology
Besides the effect of rictor deletion on cell size, we also observed 
a striking difference in neurite morphology. The most obvious 
difference to control mice, which was observed in both RibKO 
and RiPuKO mice, was an increase in the number of primary 
dendrites in Purkinje cells. Although both SGK1 and Akt have 
also been implicated in neurite growth (Read and Gorman, 2009), 
there is no direct evidence for their involvement in the shaping 
of neurites in Purkinje cells. We therefore hypothesize that those 
morphological changes are rather due to the loss of PKC isoforms 
in RibKO and RiPuKO mice. As shown previously, mTORC2 
is required for the phosphorylation of some PKC isoforms at 
the turn motif site (Facchinetti et al., 2008; Ikenoue et al., 2008). 
This phosphorylation is important for the stability of the protein 
as nonphosphorylated forms are rapidly degraded by the protea-
some pathway (Facchinetti et al., 2008; Ikenoue et al., 2008). 
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Materials and methods
Generation of mice
Mice, homozygous for an allele containing LoxP sites flanking exon 4 and 
5 of the rictor gene were crossed with nestin-Cre transgenic mice (B6.Cg-
Tg(Nes-cre)1Kln/J; The Jackson Laboratory). These mice were then crossed 
with homozygously floxed rictor mice (rictorfl/fl) to obtain RibKO mice 
(rictorfl/fl; Tg(Nes-cre). Littermates that either lacked Cre (rictorfl/fl) or were 
heterozygous for the floxed allele (rictorfl/+; Tg(Nes-cre)) were used as con-
trols. Purkinje cell–specific knockouts (RiPuKO mice) were obtained by 
crossing mice where Cre was knocked into the L7/Pcp-2 locus (Saito et al., 
2005) with rictorfl/fl mice. Further crossing yielded mice that carried two 
floxed rictor alleles and were heterozygous or homozygous for L7/Pcp-2-Cre 
and are referred to as RiPuKOCre/+ or RiPuKOCre/Cre, respectively. Control mice 
for RiPuKOCre/+ mice were (rictorfl/fl; L7/Pcp-2+/+). Controls for RiPuKOCre/Cre 
mice were (rictorfl/+; L7/Pcp-2Cre/Cre). Genotyping was performed by PCR 
on DNA isolated from toe using specific primers for the floxed region, the 
Cre transgenes, or the recombined alleles as described elsewhere (Bentzinger 
et al., 2008).

Tissue homogenization and Western blot analysis
Brains were dissected, transferred to protein lysate buffer (50 mM Tris-HCl, 
pH 7.5, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100 supplemented with 
EDTA-free protease inhibitor cocktail tablets [Roche], and phosphatase in-
hibitor tablets PhosSTOP [Roche]), and homogenized with a glass/Teflon 
homogenizer using 10 strokes at 800 rpm. The homogenate was centri-
fuged at 13,600 g for 15 min at 4°C. Cleared lysates were then used to 
determine total protein amount (BCA Protein Assay; Thermo Fisher Scien-
tific). After dilution with 4× SDS sample buffer, equal protein amounts were 
loaded onto SDS gels.

Antibodies
Rabbit polyclonal antibodies were as follows: P-PKC (Ser657), PKC, 
and P-GAP-43 (Ser41) from Santa Cruz Biotechnology, Inc.; P-FoxO1 
(Ser256), P-mTOR (Ser2448), P-mTOR (Ser2481), Akt, P-Akt (Thr308), 
P-GSK-3 (Ser9), mTOR, PKC, S6 ribosomal protein, P-S6 ribosomal pro-
tein (Ser235/236), P-S6 kinase(Thr389), S6K, NDRG1, P-NDRG1 (Thr346), 
P-4E-BP (Thr37/46), P-eIF4E (Ser209), cleaved caspase3, P-MARCKS 
(Ser152/156), and PKC from Cell Signaling Technology; and P-PKC2 
(Thr641) and P-PKC (Ser729) from Abcam. Rabbit monoclonal antibodies 
were as follows: PKC, -actin, P-Akt (Ser473), GSK-3, P-Tuberin (Thr1462), 
and Rictor from Cell Signaling Technology; and PKC2 from Abcam. Mouse 
monoclonal antibodies were as follows: -tubulin from BD, Calbindin D-28K 
from Swant, GAP-43 from Invitrogen, NeuN from EMD Millipore, and 
MARCKS from Abcam. Guinea pig polyclonal antibodies were as follows: 
vGLUT1 and vGLUT2 from Synaptic Systems. Rat monoclonal antibodies 
were as follows: anti-BrdU from AbD Serotec.

Histology and immunohistochemistry
Mice were anesthetized with a lethal dose of Pentobarbital (300 mg/kg) 
and transcardially perfused with 4% PFA. Brains were removed and tissue 
processed with a Shandon Pathcenter and embedded in paraffin (Merck). 
Paraffin blocks were cut with a microtome into 3–5-µm-thick sagittal or coro-
nal sections. Antigen retrieval was performed before immunostaining by 
boiling the sections in sodium citrate buffer (10 mM sodium citrate and 
0.05% Tween 20, pH 6) for 20 min. Sections were rinsed twice in PBS, 
blocked with blocking buffer (5% BSA in PBS, and 0.2% Triton X-100) for  
30 min, and incubated with primary antibody overnight at 4°C. Samples 
were washed three times with PBS and then stained with appropriate fluores-
cently labeled, secondary antibodies for 1 h at room temperature. Samples 
were mounted with Kaiser’s glycerol gelatin (Merck). General histology on 
sections was performed using cresyl violet. Immunohistochemically stained 
sections were examined with a fluorescence microscope (model DM5000B; 
Leica) and a 10× objective (HC PL Apo, NA 0.4; Leica), a 20× objective  
(PL Fluotar, NA 0.5; Leica), a 40× objective (HCX Plan APO, NA 0.75; 
Leica), or a 63× objective (HCX PL APO, NA 1.32; Leica). Pictures were 
captured with a digital camera (F-View; Soft Imaging System) and analySIS 
software (Soft Imaging System). In some experiments, sections were imaged 
with the SPE confocal laser scanning microscope (model DMI4000B; Leica) 
using an ACS APO 40× objective (NA 1.15) or an ACS APO 63× objective 
(NA 1.3) at a resolution of 1024 × 1024 pixels. Pictures were captured 
using the built-in digital camera and software. Image analysis was performed 
using Imaris (Bitplane AG) or Adobe Photoshop CS5.

Golgi staining was performed by incubating freshly perfused mouse 
brains in Golgi solution (5% potassium dichromate, 5% potassium chromate, 

Our findings that several PKC isoforms are almost undetectable 
in brain lysates of adult RibKO mice are strong in vivo support 
for the importance of mTORC2 in stabilizing PKCs. Mutations 
in PKC cause spinocerebellar ataxia (SCA) type 14 (Chen et al., 
2003) and as of today, more than 20 causative mutations have been 
described (Seki et al., 2011). Interestingly, some of the pheno-
types described for Purkinje cells expressing those PKC mu-
tants are similar to those observed in RibKO and RiPuKO mice. 
Most of the PKC mutations act in an autosomal-dominant way 
and it is not clear whether the ataxia is due to a dominant effect 
or the consequence of a loss of function of those mutants.

We also found that the two PKC substrates GAP-43 and 
MARCKS were not phosphorylated in RibKO mice. Whereas 
GAP-43 is well known to affect axon growth and terminal sprout-
ing (Benowitz and Routtenberg, 1997), MARCKS affects den-
dritic branching (Li et al., 2008) and the morphology and density 
of postsynaptic spines (Calabrese and Halpain, 2005). Interest-
ingly, the function of MARCKS is modulated by PKC-dependent 
phosphorylation. Thus, the resemblance of the phenotypes from 
PKC, GAP-43, and MARCKS mutants with those in RibKO 
or RiPuKO mice indicates that mTORC2 affects neuron mor-
phology via the PKC pathway. The fact that only some aspects 
of the rictor-deficient phenotype are also observed in PKC- or 
PKC-deficient Purkinje cells (Metzger, 2010) suggests that a 
knockout of individual PKC isoforms might be compensated by 
other isoforms.

Synaptic function
Another interesting result of our work is that synaptic function is 
also influenced by the deletion of rictor from the mouse brain. 
Because of the very severe morphological changes in the cerebel-
lum of the RibKO mice, it is not that surprising to detect changes 
in the function of both excitatory and inhibitory synapses. The 
reduction in the frequency and the amplitude of the mEPSCs 
also correlated well with the observed changes in synaptic mark-
ers. More importantly, we also observed significant changes of 
synaptic function in the RiPuKO mice and those changes were 
restricted to Purkinje cells that were negative for PKC (i.e., de-
ficient for rictor). While the amplitude of the mEPSCs was not 
changed in RiPuKO mice, mEPSC frequency was only 50% 
of that in control cells. In contrast, the frequency of the mIPSCs 
was like in controls but the amplitude was significantly smaller. 
The finding that a Purkinje cell–specific elimination of rictor dif-
ferentially affected both excitatory and inhibitory synapses sug-
gests a role of mTORC2 in synaptic homeostasis. Interestingly, 
homeostatic adaptation of synapses is discussed as a mechanism 
that contributes to the overall changes upon sustained exposure 
to morphine, and mTORC2 has been implicated in this process 
(Mazei-Robison et al., 2011).

In summary, our data show that mTORC2 has an important 
function in neurons and thus the removal of rictor from brain re-
sults in a considerably more severe phenotype than its inactiva-
tion in other tissues. Although our results on nestin-Cre–mediated 
rictor deletion suggest that mTORC2 might have similar functions 
in different neurons, it will be important in the future to analyze 
other neuron-specific rictor knockout models for the contribution 
of mTORC2 to specific psychiatric and neurological diseases.
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Wierenga et al. (2008). In brief, after the recording, slices were fixed over-
night at 4°C in 4% PFA dissolved in PBS. After extensive washing in PBS, 
slices were permeabilized and blocked for 24 h at 4°C in blocking solution 
(10% FBS in PBS, containing 0.4% Triton X-100) on a shaker. Anti-PKC 
antibody was applied overnight at 4°C in blocking solution (5% FBS in PBS, 
containing 0.4% Triton X-100) on a shaker. After extensive washing with 
PBS, appropriate secondary antibodies were applied. Acute slices were 
mounted in Kaiser’s glycerol gelatin with the patched side facing up. Stained 
slices were analyzed by confocal microscopy as described above using 
the 40× objective.

Single-cell RT-PCR
Purkinje cells were cell patch-clamped for 10–20 min using silanized patch 
pipettes filled with 7 µl of intracellular solution that contained biocytin as 
described above. After whole-cell recording, cytosol was harvested by as-
piration and expelled into a PCR tube containing rRNasin (Promega), random 
hexamer primers, and dNTP (final concentrations are indicated below). 
The mixture was incubated for 5 min at 65°C and then chilled on ice be-
fore adding further components. mRNA was reverse transcribed in a 20-µl 
reaction volume containing 100 ng random hexamer primers, 0.5 mM 
dNTPs, 40 U rRNasin, 5 mM dithiothreitol, and 10 U SuperScript III re-
verse transcription (Invitrogen) in 1× “first strand buffer” (5× buffer: 0.25 M 
Tris-HCl, pH 8.3 at 25°C, 375 mM KCl, and 15 mM MgCI2). The reaction 
mixture was incubated for 45 min at 50°C, followed by inactivation at 
70°C for 15 min. 2 µl of the stopped reaction mixture were used as  
input cDNA for the subsequent nested two-step PCR, which was performed 
with the primer pairs P3–P4 for the first and P1–P2 for the second PCR, 
respectively. 35 cycles were performed for each PCR. The primer se-
quences are P1: 5-GCCAAATTGCAAGGAGTATCA-3; P2: 5-TGAGTT
GGCCACAGAACTAGG-3; P3: 5-CTGACCCGAGAACCTTCTGA-3; 
P4: 5-TTCCTGAAGCCCATCATTTC-3. The primer pair P1–P2 results in 
an amplicon of 365 bp or 172 bp in case of the wild-type or the recom-
bined allele, respectively.

Tissue cultures
Neurospheres were isolated from newborn (P0) mice. Pups were decapi-
tated, and brains were removed and transferred into ice-cold Hank’s buff-
ered salt solution (HBSS; Invitrogen). Meninges were carefully removed 
under the dissection microscope and one brain half was transferred into 
freshly prepared neurosphere medium (NM) consisting of DMEM-F12 
(1:1), supplemented with 1% penicillin/streptomycin, 0.2 mg/ml glutamine, 
2% B27, 2 µg/ml heparin, 20 ng/ml EGF, and 10 ng/ml FGF2. The brain 
was carefully homogenized and plated on a 6-cm dish containing 4 ml 
NM and maintained in an incubator (36.5°C, 5% CO2). After 4–5 d the 
neurospheres were trypinized, dissociated into single cell suspension, and 
the resulting secondary neurospheres were cultured for 6 d. 24 h before 
fixation, 10 µM BrdU was added to the medium. Neurospheres were fixed 
with 4% PFA and imaged at low magnification to determine the diameter of 
the neurospheres. To assess the number of the BrdU-positive cells, neurospheres 
were embedded in cryoprotective material, cut into 12-µm-thick sections, 
and immunostained with antibodies to BrdU. The number of BrdU-positive 
cells per sphere was counted and normalized to the sphere diameter.

Organotypic cerebellar slices were cultured as described elsewhere 
(Boukhtouche et al., 2006). In brief, P0 brains were dissected and trans-
ferred into ice-cold Gey’s balanced salt solution. Meninges were carefully 
removed and cerebella dissected. With a tissue chopper (McIIwain), 350-µm-
thick sagittal slices were cut and transferred into fresh Gey’s solution. Slices 
were cultured on 0.4-µm membranes in 1 ml culture medium (50% basal 
medium with Earl’s salts, 25% HBSS, 25% horse serum, 1 mM glutamine, 
and 5 mg/ml glucose) for 14 d. Culture medium was changed every 2–3 d.

Cultures of dissociated hippocampal neurons were prepared as fol-
lows: brains of P0 mice were dissected and transferred into ice-cold HBSS. 
Hippocampi were removed, trypsinized for 15 min, and dissociated. Cells 
were plated onto poly-l-lysine–coated coverslips at a density of 90,000 
cells per well in a 24-well plate. Neurons were grown for 14 d. After 7 d, 
neurons were transfected with constructs encoding GFP under the synapsin 
promoter using Lipofectamine. After 14 d, cultures were fixed with 4% PFA 
in PBS containing 120 mM sucrose, washed in PBS, and embedded with 
Kaiser’s glycerol gelatin.

Mouse behavior
For hindlimb clasping assessment, 1-yr-old mice were lifted by the tail and 
held over the cage for up to 2 min. Clasping was scored when mice crossed 
hindlimbs for more than 3 s. The rotarod test was performed by placing 
10-wk-old mice on a rod that accelerated from 5 rpm to 30 rpm in 2 min. 
Latency to fall off the rod was measured.

and 5% mercuric chloride dissolved in H2O) for 6 wk. The solution was 
changed every 2–3 days. Brains were subsequently dehydrated in 50, 70, 
90, and 100% ethanol, each step for several days and then transferred to 
2, 4, and 8% Celloidin solution. For embedding, 8% Celloidin was evapo-
rated to 16%, hardened to a block, and cut with a vibratome into 200-µm 
sagittal sections. The sections were transferred onto gelatinized slides and 
stained first in ammonium hydroxide (14%) for 30 min followed by Kodak 
fix solution for 30 min. The sections were then dehydrated in 50, 70, 90, 
and 100% ethanol followed by 15 min in CXA solution (1:1:1 chloroform/
xylol/ethanol) and embedded with Merckoglas (Merck). Microscopy was 
performed with a light microscope (model DM RB, Leica) using bright-field 
optics and 10, 20, or 40× objectives (PL Fluotar, NA 0.3–0.7; Leica). Pic-
tures were captured with a digital camera (model DFC 420; Leica) and the 
appropriate software.

Quantification
Quantification of cell numbers used the method of isotropic fractionation as 
described elsewhere (Herculano-Houzel and Lent, 2005). In brief, brains 
were fixed for 3–30 d in 4% PFA and then mechanically dissociated with 
a glass/Teflon homogenizer in 40 mM sodium citrate and 1% Triton X-100. 
The homogenate was centrifuged for 10 min at 4,000 g and the superna-
tant was carefully removed. The pellet containing the nuclei was resus-
pended in 10 ml PBS containing 1% Hoechst dye. After sufficient agitation 
to achieve isotropy, 5-µl aliquots were removed and the number of nuclei 
was counted in a hemocytometer using a fluorescence microscope. Quan-
tification of Golgi-stained neurons was performed by Neurolucida recon-
struction and analysis with Neurolucida software. Volumetric quantification 
of brain areas was performed on cresyl violet–stained, 25-µm coronal par-
affin sections. The arbitrary area of microscopic pictures taken at 2.5× was 
analyzed with Analysis software. Analysis of cell density was performed 
on sagittal, NeuN-stained, 5-µm-thick paraffin sections in the retrosplenial 
and visual cortex. Sholl analysis of dissociated hippocampal neurons was 
performed with Analysis software by counting the number of neurite cross-
ings starting from the soma in a defined distance of 25 µm up to 125 µm. 
Quantification of Western blot protein band intensity was performed with 
the ImageJ program (National Institutes of Health). Quantification of the 
mean dendrite diameter of Purkinje cells was performed in sagittal, calbin-
din-stained cerebellar sections by measuring the dendrite diameter within 
the primary dendrite from the soma up to the first node. Apoptotic cells 
were quantified by staining P7 cortical sections with antibodies to cleaved 
caspase3. Cells were distinguished from blood vessels by counterstaining 
with Hoechst and the number of caspase3-positive cells per 1,000 cells 
(identified by Hoechst staining) was determined.

Statistical analysis
Statistical significance was assessed with the Student’s t test or one-way 
Anova. Differences were considered to be statistically significant if the 
P value was less than 0.05. Quantitative data are presented as means ± 
SEM as indicated in the figure legends.

Electrophysiology
Mice were deeply sedated with isoflurane. After decapitation, the brain 
was rapidly removed and immediately transferred into ice-cold, oxygen-
ated (95% O2, 5% CO2), low calcium artificial cerebrospinal fluid (ACSF) 
containing 119 mM NaCl, 1 mM NaH2PO4, 2.5 mM KCl, 0.125 mM CaCl2, 
3.3 mM MgCl2, 11 mM d-glucose, and 26.2 mM NaHCO3. Cerebella 
were cut with a vibratome into 250-µm sagittal sections in low calcium 
ACSF. Slices were transferred to oxygenated ACSF containing 119 mM 
NaCl, 1 mM NaH2PO4, 2.5 mM KCl, 2.5 mM CaCl2, 1.3 mM MgCl2,  
11 mM d-glucose, and 26.2 mM NaHCO3, incubated for 30 min at 34°C, 
and subsequently retained for at least 30 min at room temperature in oxy-
genated ACSF before recording. Miniature events were recorded using an 
Axopatch Multiclamp 700B amplifier (Molecular Devices) and borosilicate 
glass pipettes (4–6 mΩ) filled with intracellular solution (135 mM CsMeSO4, 
8 mM NaCl, 10 mM Hepes, 0.5 mM EGTA, 4 mM Mg-ATP, 0.3 mM 
Na-GTP, and 5 mM lidocaine-N-ethylbromide). For mEPSC recording, the 
holding potential was set to 70 mV. For mIPSC recording, the holding 
potential was set to 0 mV. In both conditions, the postsynaptic current was 
recorded for 10 min in the presence of 0.5 µM tetrodotoxin (TTX). Traces 
were further analyzed with the Mini Analysis Program v6 (Synaptosoft).

Biocytin labeling of single Purkinje cells
Biocytin was dissolved in the intracellular solution at a concentration of  
3 mg/ml by sonication at 4°C. The orientation of the acute slice was 
noted for the whole-cell recordings. Staining procedure was adapted from 
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