C. elegans Anillin proteins regulate intercellular bridge stability and germline syncytial organization

Rana Amini, Eugénie Goupil, Sara Labella, Monique Zetka, Amy S. Maddox, Jean-Claude Labbé, and Nicolas T. Chartier

In the original version of Figure 7, the y axis unit labels were incorrect in panels B and C.

A corrected version of Figure 7 is shown below. The HTML and PDF versions of this article have been corrected. The error remains only in the print version.

Figure 7. Cytoplasmic streaming in the rachis may be responsible for germline disorganization in ani-2 mutants. (A) DIC images of the germlines of wild-type (left) and ani-2(−) (right) young adult animals. Some membrane partitions are outlined in red. The white arrow depicts the direction of cytoplasmic streaming. (B) DIC images (top) and schematic representations (bottom) of kymographs of cytoplasmic streaming in the gonads of animals depicted in A. Kymographs were made along the white line shown in A. The total duration of the movie is 45 min. (C) Average velocity of cytoplasmic streaming in the rachis of wild-type (black) and ani-2(−) (gray) animals. Error bars represent SD over 9 animals analyzed for each genotype. (D) Mid-section confocal images of a wild-type (top) and an ani-2(−) (bottom) male adult germline expressing a membrane marker (red) and GFP::PGL-1 (green). (E) Measured fluorescence intensities (in arbitrary units) for the membrane marker along the lateral and apical cortices of the germ cells of each male genetic background delineated by a dashed square in D. Arrows point to peaks of membrane marker fluorescence intensity bordering a minimum. (F) Proportion of germ cells showing rachis bridges with a diameter >0.8 µm (turquoise) or <0.8 µm (red) in wild-type and ani-2(−) animals of the adult stage, as measured by membrane marker distribution. The numbers in brackets represent the total number of germ cells analyzed. (G) Mid-section confocal images of the germlines of an ani-2(−) adult hermaphrodite (top) and an ani-2(−) adult male (bottom) expressing a membrane marker (red) and GFP::PGL-1 (green). Arrows point to multinucleated germ cells, whose number is significantly reduced in ani-2(−) males. (H) Mid-section confocal images of the gonads of wild-type (top) and ani-2(−) (bottom) adult hermaphrodites expressing a membrane marker (red) and depleted of GLD-1 and GLD-2 by RNAi. Bars [A, B, D, G, and H], 10 µm.
C. elegans Anillin proteins regulate intercellular bridge stability and germline syncytial organization

Rana Amini, Eugénie Goupil, Sara Labella, Monique Zetka, Amy S. Maddox, Jean-Claude Labbé, and Nicolas T. Chartier

Introduction

Cytokinesis, the last step of cell division, allows the physical separation of two daughter cells by abscission. Accordingly, it is precisely controlled, and cytokinetic failure can lead to aneuploidy, which can cause developmental alterations or have pathological consequences. Interestingly, during the development of certain tissues, some cells are programmed to undergo incomplete divisions to form a syncytium, wherein multiple nuclei remain connected by stable cytoplasmic intercellular bridges (Haglund et al., 2011; Lacroix and Maddox, 2012). For instance, in many species, including humans, germ cells are connected by intercellular bridges that were proposed to regulate germ cell development by facilitating nutrient sharing, and the absence of these bridges is associated with infertility (Brill et al., 2000; Greenbaum et al., 2006, 2011). Although many actin-associated proteins and cytokinetic regulators are enriched at intercellular bridges (Greenbaum et al., 2011; Haglund et al., 2011; Lacroix and Maddox, 2012), the mechanisms that regulate their timely formation, maintenance, and disassembly remain poorly understood.

The Caenorhabditis elegans germline comprises a powerful model system in which to study syncytial organization. Hermaphrodite adult animals possess two U-shaped gonad arms, each containing ~1,000 germ cells that are radially arranged around a central rachis, to which they are connected by an intercellular bridge (termed rachis bridge; Zhou et al., 2011), thus comprising a syncytium (Hirsh et al., 1976). Each gonad arm is organized in a polarized manner, from distal to proximal, such that germ cells at various stages of gametogenesis are physically segregated (see Fig. 3 A; Kimble and Crittenden, 2007). The most distal portion of the gonad contains ~200 mitotic germline stem cells. Germ cells that leave the distal region stop proliferating and begin meiotic differentiation, successively going through stages of meiotic prophase as they progress toward the proximal region. Differentiation culminates in the most proximal part of the gonad where oocyte growth is primarily sustained by an actin-dependent streaming of cytoplasm in the central rachis (Wolke et al., 2007; Kim...
et al., 2013). Mature oocytes lose their connection with the rachis and become cellularized, ready for ovulation and fertilization by sperm stored in the spermatheca (McCarter et al., 1999; Maddox et al., 2005). This structural organization ensures that oocytes are constantly produced in a conveyor belt–like fashion.

All germ cells in C. elegans originate from a common precursor (Wang and Seydoux, 2013). After fertilization, the zygote contains germline determinants and is referred to as the P₀ germline blastomere. During embryogenesis, germline determinants are progressively compartmentalized through four successive asymmetric divisions, resulting in the generation of a single germline blastomere termed P₂ (Fig. 1 A; Deppe et al., 1978). The P₃ blastomere divides symmetrically (at the embryonic 100-cell stage) to give rise to the primordial germ cells Z₂ and Z₃, which do not undergo further division during the remainder of embryogenesis (Deppe et al., 1978; Sulston et al., 1983). As animals hatch in their first larval stage (L1) and begin to feed, Z₂ and Z₃ initiate proliferation and, through successive larval developmental stages (L2, L3, and L4), generate all germ cells in both gonad arms of the adult (Fig. 2 B; Hirsh et al., 1976).

Germline organization in C. elegans depends on a number of conserved actin-binding proteins that are enriched at the rachis bridge of germ cells (Maddox et al., 2005; Zhou et al., 2013). Among these proteins is ANI-2, a homologue of the actomyosin scaffold protein Anillin (Maddox et al., 2005). Whereas a canonical C. elegans Anillin homologue (termed ANI-1) is enriched in the cytokinetic furrow and predicted to bind nonmuscle myosin, F-actin, and septins (Field and Alberts, 1995; Oegema et al., 2000; Paolietti and Chang, 2000; Straight et al., 2005), ANI-2 is a shorter Anillin isoform that lacks the N-terminal domains predicted to bind myosin and actin, and was thus proposed to function as a competitive negative regulator of contractility (Chartier et al., 2011). ANI-2 decorates the surface of the rachis and is enriched at rachis bridges in adult hermaphrodites (Maddox et al., 2005). In the proximal gonad, gametes progressively cellularize and detach from the rachis, so that mature oocytes and fertilized embryos contain very little ANI-2 protein (Maddox et al., 2005; Chartier et al., 2011). Partial depletion of ANI-2 by RNAi causes precocious oocyte cellularization, whereas more thorough depletion results in severe germline disorganization, germ cell multinucleation, and adult sterility (Maddox et al., 2005; Green et al., 2011).

How the syncytial architecture of the C. elegans germ-line arises during development is unknown. Here, we present the first characterization of the genesis and topology of gonad syncytial architecture throughout development. We find that ANI-2 is expressed early in germline development and is required for the stabilization of the intercellular bridges that connect germ cells to the rachis, in part by opposing ANI-1 activity. Loss of ANI-2 leads to germ cell multinucleation, which can be rescued by blocking cytoplasmic streaming in the rachis. Our results support a model in which ANI-2 stabilizes intercellular bridges and makes them robust to mechanical stress at the onset of oogenesis.

Results

ANI-2 is enriched at the rachis bridge of all germ cells throughout gonad development

To address how the germline syncytium is formed and maintained, we first sought to identify a marker that would enable the monitoring of syncytial organization throughout development. As ANI-2 was previously reported to localize to the rachis of adult animals (Maddox et al., 2005), we analyzed its spatiotemporal localization throughout C. elegans development. In wild-type embryos, endogenous ANI-2 was present in very low amounts throughout early embryogenesis, as previously reported (Chartier et al., 2011), but appeared specifically in the P₄ germline blastomere (Fig. 1 B). ANI-2 accumulated at the cell equator during cytokinesis as P₅ divided to produce Z₂ and Z₃, and remained enriched at the midbody that was formed between the two primordial germ cells (Fig. 1 C and D). The timing of ani-2 expression is similar to that reported for many germline-specific genes that are controlled by the transcriptional repressor PIE-1 (Wang and Seydoux, 2013). We perturbed germline specification by depleting PIE-1 and found that ANI-2 was undetectable in these embryos (Fig. 1 E). In contrast, when we depleted MEP-1 to deregulate germline gene expression, ANI-2 was present in multiple cells (Fig. 1 E). This indicates that ANI-2 is a bona fide germline-enriched protein that is expressed early during germ cell specification and stably accumulates between the two primordial germ cells.

We next monitored ANI-2 distribution throughout germline development in animals coexpressing ANI-2 fused to GFP (GFP::ANI-2) and a membrane marker, an mCherry-tagged probe previously shown to decorate the plasma membrane (Kachur et al., 2008; Green et al., 2011). Similar to endogenous ANI-2 (Maddox et al., 2005), GFP::ANI-2 localized between Z₂ and Z₃ in newly hatched L1 larvae and was present in all germ cells during larval development and into adulthood (except in the most mature oocytes), lining the rachis and becoming progressively enriched at rachis bridges (Fig. 2 A). These results indicate that ANI-2 is present in all germ cells and enriched at rachis bridges throughout germline development, from the birth of primordial germ cells to the completion of oocyte matura tion, making it an ideally suited marker to monitor syncytium organization during development.

The syncytial architecture of the C. elegans gonad arises progressively during larval development

To determine how the syncytial architecture of the germline arises during development, we developed a fluorescence microscopy–based assay to monitor the organization of rachis bridges. We measured the cortical fluorescence intensity in multiple optical sections of germ cells coexpressing GFP::ANI-2 and the membrane marker (Fig. 3 B). A given germ cell was considered to be open to the rachis when a minimum in membrane marker fluorescence intensity was detected between two distinct fluorescence intensity peaks of GFP::ANI-2 (Fig. 3, C and D; see Materials and methods). Rachis bridge diameter was assessed by measuring the distance between the peaks of intensity for
ANI-2 regulates germline syncytial organization

Figure 1. ANI-2 stably accumulates at the midbody between the two primordial germ cells. (A) Schematic representation of germ cell specification (black nuclei) during embryonic development. The primordial germ cells Z2 and Z3 are born from the P4 blastomere and do not undergo further division until hatching. (B) Mid-section confocal images of fixed wild-type embryos immunostained with ANI-2 (green), P-granules (PGL-1, gray), PAR-4 (to label the cortex, red), and DAPI (blue). Arrows point to the germline blastomeres. Bar, 10 µm. (C) Confocal projections of the dividing P4 blastomere in fixed wild-type embryos immunostained with ANI-2 (green), P-granules (PGL-1, red), and DAPI (blue). The white dashed line delineates the cell membrane. Bar, 5 µm. (D) Mid-section confocal images of fixed wild-type (top), pie-1(RNAi) (middle), and mep-1(RNAi) (bottom) embryos immunostained with ANI-2 (green), α-tubulin (red), and DAPI (blue). In all frames, anterior is to the left. Bar, 10 µm.
Similar results were obtained when we measured rachis bridge organization in animals expressing GFP-tagged versions of the canonical Anillin ANI-1 or nonmuscle myosin II (NMY-2), two contractility regulators that, like ANI-2, accumulate at germ cell rachis bridges (Fig. S1; Nance et al., 2003; Maddox et al., 2007). These results indicate that germline syncytial organization occurs progressively during larval development.

We next applied this assay to test whether primordial germ cells in newly hatched L1 larvae are interconnected. According to the localization pattern of GFP::ANI-2 and the membrane marker, Z2 and Z3 did not appear to share a cytoplasmic connection (5/5; Fig. 3 G). However, we reasoned that the small measurable zone between these germ cells could confound the fluorescence intensity assay. To independently verify that these cells indeed lacked a cytoplasmic connection, we monitored the diffusion of cytoplasmic, exogenously supplied photo-convertible rhodamine-dextran in the primordial germ cells Z2 and Z3. Whereas photo-activation of rhodamine-dextran resulted in its rapid diffusion within a single germ cell (Fig. S2; see also Green et al., 2013), we did not detect significant fluorescence accumulation in the sister germ cell up to 30 min after photoactivation (Fig. 3, I and J). Together, these results indicate that the two primordial germ cells Z2 and Z3 are linked by an intercellular bridge that has

Figure 2. ANI-2 is found at the rachis bridge of all germ cells throughout larval development. (A) Mid-section confocal images of the germline of wild-type hermaphrodites expressing GFP::ANI-2 (green, yellow arrowheads) and a membrane marker (red) at various stages of development. For simplicity, only one gonad arm is shown from the L3 stage onward. In all frames, anterior is to the left. Bar, 10 µm. The regions delineated by the white dashed squares are magnified in the inset (bar for insets, 5 µm). (B) Schematic representation of germline development at the developmental stages shown in E. Germ cells undergo proliferation and differentiation during larval growth until animals reach adulthood. For simplicity, only the germline is depicted.
a small diameter and allows little or no cytoplasmic exchange, and that rachis bridge opening occurs progressively during larval development, culminating at the adult stage in a germline that is fully syncytial.

ANI-2 is required for rachis bridge stability
ANI-2 is found in all germ cells of larvae and adult animals (except for the cellularized oocytes), suggesting that it regulates rachis bridge formation and/or maintenance. To test this possibility, we measured rachis bridge organization in the germline of living ani-2(ok1147) mutant animals coexpressing the fluorescent membrane marker and GFP::ANI-1. ok1147 is a presumptive null allele of ani-2, and homozygous mutant embryos develop into sterile adult animals with a very disorganized germline containing multinucleated, abnormally sized germ cells, similar to the phenotype reported after ANI-2 depletion by RNAi (see the following section and Fig. 5 A; Green et al., 2011). Surprisingly, however, the germline morphology of ani-2 mutant L4-stage larvae was largely normal, with regularly sized and spaced mononucleated germ cells lining the gonad wall (Fig. 4, A and C). Despite these aspects of morphology being normal, rachis bridge organization in ani-2 mutant L4 stage animals was abnormal. Whereas nearly all control germ cells had open rachis bridges (i.e., >0.8 µm; Fig. 4, B and E), the majority of germ cells (46/68) in L4-stage ani-2 mutant animals lacked a defined opening to the rachis and a single peak of GFP::ANI-1 intensity was detected (Fig. 4, D and E). In the minority of germ cells in which an open rachis bridge was detected (22/68), the diameter of the bridge was significantly smaller than that measured in control animals (Fig. 4 F). Rachis bridges were also largely absent from the germ cells of younger larvae (early L3; Fig. 4 E). Similar results were obtained from strains coexpressing the membrane marker with either NMY-2::GFP or GFP::PGL-1, a germline P granule component that decorates the surface of germ cell nuclei (Kawasaki et al., 1998; Merritt et al., 2008; Fig. S3). We conclude that ANI-2 is required for the formation and/or maintenance of germ cell rachis bridges during germline development.

ANI-2 stabilizes the membrane partitions between germ cells from the late L4 larval stage
Animals lacking ANI-2 fail to form rachis bridges during larval development and become sterile adults with multinucleated germ cells (Fig. 5 A), suggesting that multinucleation is a consequence of defects in rachis bridge formation. To address this possibility, we monitored germline development in animals coexpressing the membrane marker fused to GFP and histone H2B fused to mCherry (Green et al., 2011). We found that until ani-2 mutant animals reached the L4 larval stage, germline expansion proceeded largely normally; the number of germ cells was comparable to that of control animals at all stages and most germ cells contained a single nucleus (Fig. 5 A). In addition, immunofluorescence analysis of gonads from young adult animals revealed that the germ cells of ani-2 mutants can enter meiotic differentiation and form sperm, although male mating assays revealed that the sperm are not functional (Fig. S4 A; unpublished data). The primary defect of ani-2 mutant gonads during early larval development was a marked decrease in rachis diameter (Fig. S4 B). Thus, cell proliferation and entry into meiosis are not grossly impaired in ani-2 mutants and germline development is largely normal during early larval stages.

In contrast, in the proximal gonad of late L4-stage ani-2 mutant animals, abnormal multinucleated germ cells were present, albeit at low frequency (Fig. 5, A and B). In young adult animals, multinucleated germ cells increased in proportion, and were observed in progressively more distal regions of the gonad (Fig. 5, A and B). In the gonads of older adult ani-2 mutant animals (20–48 h post-L4), most germ cells were multinucleated and the number of nuclei per compartment was higher than in previous developmental stages (Fig. 5 C). Furthermore, the germ cells of ani-2 mutant animals did not complete meiosis and showed a defect in diakinesis (Fig. S4 A). Multinucleation and diakinesis defects were never observed in the gonads of control animals (n > 100). Loss of ANI-2 therefore results in abnormal germ cell multinucleation, initially in the proximal gonad region of late L4 stage animals but progressively affecting the entire germline.

Multinucleation, together with the abnormal execution of diakinesis, is likely key to the sterility of ani-2 mutant animals. Multinucleation could arise from cumulative cytokinetic failures of dividing germine stem cells in the distal region of the gonad. However, time-lapse analysis of germline stem cell division in ani-2 mutants revealed that they undergo normal cytokinesis (Fig. S4 D). Likewise, multinucleation did not arise from germ cells abnormally reentering mitosis, as depletion of the mitotic regulators CDK-1 or PLK-1 by RNAi did not prevent this defect (Fig. S4 E; unpublished data). These results indicate that the multinucleation defect of ani-2 mutant germ cells is not a consequence of inappropriate cell division.

Because ANI-2 localizes to rachis bridges in wild-type animals, we considered the possibility that multinucleation in ani-2 mutants arises from a collapse of membrane partitions between germ cells. Time-lapse analysis of the proximal gonad of late L4-stage and young adult ani-2 mutants revealed two clearly defined instances of germ cell partition collapse, resulting in multinucleation (Fig. 5 D). This is likely an underestimation of the frequency of this defect, as our experimental imaging conditions may have masked several more of these events (see Materials and methods). Together with our finding that germ cells do not enter mitosis inappropriately, these results indicate that ANI-2 is required starting at the L4 larval stage to maintain proper organization of the germline, at least in part by preventing the collapse of germ cell partitions.

ANI-2 and ANI-1 have opposing activities in germline organization
ANI-2 was previously proposed to regulate contractility by competing with the canonical Anillin ANI-1 for one or more contractility regulators (Chartier et al., 2011), suggesting that the defects observed in ani-2 mutants may result from ANI-1 hyperactivation. To test this, we first characterized the phenotype of ani-1(RNAi) animals coexpressing GFP::ANI-2 and the membrane marker (Fig. 6 A). We found that depleting ANI-1
Figure 3. Germ cell rachis bridge formation arises progressively during larval development. (A) Schematic representation of the adult hermaphrodite germline. ANI-2 (green) lines up at the periphery of the central rachis and is enriched at rachis bridges, and it is delocalized upon oocyte cellularization. (B and E) Mid-section confocal images of the germline of a wild-type adult (B) and L3 (E) hermaphrodites expressing GFP::ANI-2 (green) and a membrane marker (red). Bar, 10 µm. The regions delineated by the white dashed square are magnified in the inset (bar for insets, 5 µm). In B, the white arrowhead points to the germ cell opening to the rachis. (C) Schematic representation of germ cells as in A depicting the method for measuring rachis bridge organization. Fluorescence intensity is measured along the lateral and apical cortices (line shown in black). Arrows point to the position of the rachis bridge as seen in mid-section images, and the arrowhead points to the germ cell opening to the rachis. (D and F) Measured fluorescence intensities (in arbitrary
ANI-2 regulates germline syncytial organization

Amini et al.

... defects not observed in ani-2 mutants, such as a low frequency of bi-nucleated cells (unpublished data), consistent with ANI-1’s function in regulating cytokinesis. These results indicate that ANI-1 is active in the germline and that its depletion results in defects opposite to those of ani-2 mutants.

We next asked if the phenotypes observed in the gonad of ani-2 mutants are a consequence of increased ANI-1 activity. To test this, we measured germline organization in ani-2 mutant animals in which ANI-1 was depleted by RNAi (Fig. 6 D).

Figure 4. ANI-2 is required for rachis bridge stabilization. (A and C) Mid-section confocal images of the germline of a wild-type [A] and an ani-2[–] [C] L4 hermaphrodite expressing a membrane marker (red) and GFP::ANI-1 (green). Bar, 10 µm. The regions delineated by the white dashed square are magnified in the inset (bar for insets, 5 µm). In A, the white arrowhead points to the germ cell opening to the rachis. (B and D) Measured fluorescence intensities (in arbitrary units specific to each curve) for each fluorescent marker along the lateral and apical cortices (white dotted line, as shown in insets; bar for insets, 5 µm) of the germ cell magnified in A and C, respectively. Red and green arrows point to peaks of membrane marker and GFP::ANI-1 fluorescence intensities, respectively, and the black arrowhead points to the intensity minimum. (E) Proportion of germ cells showing rachis bridges with a diameter >0.8 µm (turquoise) or <0.8 µm (red) in wild-type and ani-2[–] mutant animals at the L3 and L4 larval stages, as measured by fluorescent marker distribution. (F) Maximal rachis bridge diameter in germ cells of wild-type and ani-2[–] animals at the L3 and L4 larval stages, as measured with membrane (red) or GFP::ANI-1 (green) fluorescence distribution. Rachis bridges that are <0.8 µm in diameter are excluded from this analysis. Error bars represent SD. In E and F the numbers in brackets represent the total number of germ cells analyzed.
Cytoplasmic streaming in the rachis contributes to germline disorganization in ani-2 mutants

Germ cell multinucleation in ani-2 mutants is first observed in late L4-stage animals, near the time when the proximal-most germ cells begin to grow and mature as oocytes. Oocyte growth results largely from an actin-dependent distal-to-proximal movement of cytoplasm in the rachis, which initiates as animals enter adulthood (Wolke et al., 2007; Kim et al., 2013). We reasoned that cytoplasmic streaming could cause mechanical stress in the gonad and lead to a collapse of germ cell partitions and germline multinucleation in gonads lacking full ANI-2 function. To test this hypothesis, we first determined whether cytoplasmic streaming occurs in the rachis of ani-2 mutant hermaphrodites (Fig. 7, A and B), although velocity is...
ANI-2 regulates germline syncytial organization

This indicates that cytoplasmic streaming, although disorganized, initiates properly in the gonads of ani-2 mutants.

We then tested whether ANI-2 is required to stabilize the membrane partitions between germ cells and prevent slightly reduced compared with wild-type adult animals (Fig. 7 C). In addition, whereas streaming is unidirectional toward the proximal end of the gonad in wild-type animals, the trajectory of cytoplasmic streaming in ani-2 mutants was variable (Fig. 7 B).
Figure 7. Cytoplasmic streaming in the rachis may be responsible for germline disorganization in ani-2 mutants. (A) DIC images of the germlines of wild-type (left) and ani-2(−) (right) young adult animals. Some membrane partitions are outlined in red. The white arrow depicts the direction of cytoplasmic streaming. (B) DIC images (top) and schematic representations (bottom) of kymographs of cytoplasmic streaming in the gonads of animals depicted in A. Kymographs were made along the white line shown in A. The total duration of the movie is 45 min. (C) Average velocity of cytoplasmic streaming in the rachis of wild-type (black) and ani-2(−) (gray) animals. Error bars represent SD over 9 animals analyzed for each genotype. (D) Mid-section confocal images of a wild-type (top) and an ani-2(−) (bottom) male adult germline expressing a membrane marker (red) and GFP::PGL-1 (green). (E) Measured fluorescence intensities (in arbitrary units) for the membrane marker along the lateral and apical cortices of the germ cells of each male genetic background delineated by a dashed square in D. Arrows point to peaks of membrane marker fluorescence intensity bordering a minimum. (F) Proportion of germ cells showing rachis bridges with a diameter >0.8 µm (turquoise) or <0.8 µm (red) in wild-type and ani-2(−) animals at the adult stage, as measured by membrane marker distribution. The numbers in brackets represent the total number of germ cells analyzed. (G) Mid-section confocal images of the germlines of ani-2(−) adult hermaphrodite (top) and ani-2(−) adult male (bottom) expressing a membrane marker (red) and GFP::PGL-1 (green). Arrows point to multinucleated germ cells, whose number is significantly reduced in ani-2(−) males. (H) Mid-section confocal images of the gonads of wild-type (top) and ani-2(−) (bottom) adult hermaphrodites expressing a membrane marker (green) and mCherry::Histone H2B (red) and depleted of GLD-1 and GLD-2 by RNAi. Bars, 10 µm.
mutinucleation in the absence of cytoplasmic streaming. We first tested this by examining the gonads of male animals, which are naturally devoid of cytoplasmic streaming (Wolke et al., 2007). Similar to the germ cells of adult hermaphrodites, we confirmed that the germ cells of adult wild-type males form rachis bridges and that ANI-2 is required for the maintenance of these bridges (Fig. 7, D–F). However, unlike in ani-2 mutant hermaphrodites, the germ cells in ani-2 mutant males were largely mononucleated (Fig. 7 G). We also inhibited streaming in the rachis of ani-2 mutant hermaphrodites by depleting GLD-1 and GLD-2, which blocks germ cells from entering meiosis and results in a germline devoid of gametes, filled with mitotically competent cells (Francis et al., 1995). We found that both the number of multinucleated germ cells and the number of nuclei per multinucleated compartment were significantly lower in adult ani-2 mutant hermaphrodites depleted in GLD-1 and GLD-2 compared with control ani-2 mutant animals (Fig. 7 H). Similar results were obtained using gld-1(–); gld-2(–); ani-2(–) triple mutant animals (unpublished data). Thus, the absence of cytoplasmic streaming largely rescues the multinucleation phenotype observed in ani-2 mutant germelines. Together, these results support the notion that the collapse of germ cell partitions and multinucleation of ani-2 mutant germelines is caused by cytoplasmic streaming in the rachis.

ANI-2 permits elastic deformation of the adult hermaphrodite gonad and rachis bridges

Our results support a model in which ANI-2 stabilizes rachis bridges and prevents collapse of germ cell partitions by counter-balancing the mechanical stress caused by cytoplasmic streaming in the rachis. ANI-2 could compensate for mechanical stress by conferring plasticity to germ cell rachis bridges. To test whether ANI-2 can compensate for mechanical stress, we performed time-lapse imaging of the hermaphrodite gonad during ovulation, when the movement of a mature oocyte into the spermatheca causes deformation of the proximal gonad, and is therefore likely to cause mechanical stress on the gonad and rachis bridges (Fig. 8 A). The proximal ANI-2–enriched rachis in control animals displayed elastic properties, as it stretched to reach a maximum at the moment when the oocyte entered the spermatheca and decreased rapidly thereafter (Fig. 8, A and B; and Video 1). Interestingly, the diameter of the proximal-most rachis bridge also reached its maximum upon ovulation (Fig. 8 C). This indicates that the proximal gonad undergoes elastic deformation during ovulation and further suggests that changes in rachis bridge diameter permit this deformation.

As ANI-2 is enriched at rachis bridges and is required for their stability, we tested whether ANI-2 is required for deformation of the proximal gonad. In ovulating hermaphrodites partially depleted of ANI-2 by RNAi, the length of the proximal rachis remained stable and did not reach a maximum at the time of oocyte passage into the spermatheca (Fig. 8 B and Video 2). Accordingly, rachis bridges did not display a transient increase in diameter and remained constant throughout ovulation in these animals (Fig. 8 C). This indicates that ANI-2 is required for elastic deformation of the gonad during ovulation and further supports the notion that its enrichment at rachis bridges stabilizes these structures by permitting their deformation.

Discussion

In this study we showed that the primordial germ cells Z_2 and Z_3 do not share cytoplasmic connection and that the syncytial

Figure 8. ANI-2 permits elastic deformation of the adult hermaphrodite gonad and rachis bridges. (A) Time-lapse confocal image projections of the gonad of a wild-type hermaphrodite expressing GFP::ANI-2 (green) and a membrane marker (red) captured before (top), during (middle), and after (bottom) ovulation. Arrowheads point to the most proximal rachis bridge. Double-headed arrows indicate the length of the GFP::ANI-2–enriched portion of the proximal gonad arm. Bar, 10 µm. See also Videos 1 and 2. (B and C) Measured fold-increase (as compared with minimum measurement) in proximal gonad arm length (B) and rachis bridge diameter (C) over time in the gonads of control (blue, n = 6) and ani-2(RNAi) (green, n = 5) adult hermaphrodites undergoing ovulation. Time 0 corresponds to the point of oocyte entry into the spermatheca. Error bars represent SD. (D) Proposed model depicting ANI-1 and ANI-2 function in promoting rachis bridge opening during larval development and relieving mechanical stress upon oogenesis in adult animals.

AN1-2 regulates germline syncytial organization • Amini et al. 139
architecture of the *C. elegans* germline arises progressively during larval development. The short Anillin ANI-2 is found in every germ cell, from birth of the two primordial germ cells during embryogenesis to oocyte cellularization when oogenesis completes. We demonstrated that ANI-2 is required to promote rachis bridge organization and that its absence leads to a collapse of membrane partitions between germ cells, and thus germ cell multinucleation, in part due to an increase in ANI-1 activity. We further provided evidence that this defect may be a consequence of cytoplasmic streaming in the rachis that initiates at the onset of oogenesis, and that ANI-2 can confer elastic properties to the rachis bridges when they are subjected to deformation. Based on these results, we propose a model (Fig. 8 D) in which the balance of activity between ANI-2 and ANI-1 at rachis bridges stabilizes these structures and provides them with the capacity to sustain the mechanical stress that results from cytoplasmic streaming in the gonad (and perhaps also ovulation), thus ensuring proper germline stability and organization.

Our finding that germ cell rachis bridges are not fully formed at the first larval stage and open progressively during larval development is consistent with observations made by electron microscopy that syncytial organization of the germline only becomes apparent at the L2 stage (Hirsh et al., 1976). Yet, we detected specific accumulation of ANI-2 in the P0 blastomere and at the midbody between the two primordial germ cells. This supports a view in which the cortical loading and stabilization of ANI-2 upon division of P0 contributes to prevent the completion of cytokinesis and serves as a nucleating event for intercellular bridge formation. The bridge between Z2 and Z3 would initially have a small diameter that would preclude cytoplasmic exchange between the two cells but would progressively increase its diameter during larval development. However, some of our results suggest that other regulators may contribute to intercellular bridge formation independently of ANI-2. First, whereas most germ cells in *ani-2* mutant L4 larvae have no detectable rachis bridge, 30% of them displayed a smaller but yet measurable opening to the rachis, indicating that some bridge formation can occur independently of ANI-2. Second, whereas rachis bridge diameter increased during larval development in wild-type animals, it remained small in these 30% of *ani-2* mutant germ cells, suggesting that ANI-2 promotes the opening of rachis bridges. Finally, we observed actin-dependent cytoplasmic streaming in the rachis of *ani-2* mutants, suggesting that actin cables, which are typically nucleated in the cytoplasm, can reach the central rachis, again arguing for the existence of at least small rachis bridges in *ani-2* mutants. This suggests that ANI-2 does not control the formation of rachis bridges per se, but is required to promote their opening during larval development. Further experiments will be needed to resolve whether ANI-2 functions at one or more level of germline syncytial organization.

How does ANI-2 coordinate rachis bridge organization? ANI-2 is predicted to possess the C-terminal domains found in canonical Anillin and required for binding to RhoA, Rac-GAP50C (*Drosophila* MgcRacGAP), septins, and lipids of the plasma membrane, but to lack the N-terminal actin- and myosin-binding domains (Maddox et al., 2005). Accordingly, it was previously proposed to function as a negative regulator of contractility by competing with the canonical Anillin ANI-1 for one or more contractility regulators (Chartier et al., 2011). In support of this, we found that depletion of ANI-1 results in a number of germline defects opposite to those observed in ANI-2–depleted animals: when compared with wild-type animals, oocyte cellularization is delayed (as opposed to precocious in *ani-2(RNAi)* animals), the diameter of rachis bridges is larger (it is smaller in *ani-2* mutants), and rachis diameter is increased (it is decreased in *ani-2* mutants). Furthermore, depleting ANI-1 partially suppressed the defects observed in *ani-2* mutants. ANI-1 and ANI-2 did not control their respective loading at rachis bridges, suggesting that they function by locally balancing each other’s activity. A balance of activity between ANI-1 and ANI-2 at rachis bridges could maintain the organization of these structures by locally controlling the engagement of contractility regulators, and thus regulate rachis bridge diameter. The progressive depletion of ANI-2 from rachis bridges would then promote oocyte cellularization, perhaps by allowing for more ANI-1 activity. However, depleting ANI-1 from *ani-2* mutant animals did not fully rescue their germ cell multinucleation phenotype, indicating that this defect does not arise solely from increased ANI-1 activity but likely involves other contractility regulators. Interestingly, ANI-2 was recently reported to promote the rachis bridge localization of the contractility regulators CYK-4/MgcRacGAP and ZEN-4/MKLP1 (forming the centralspindlin complex), whose depletion results in a germline organization defect similar to that of *ani-2* mutants (Green et al., 2011; Zhou et al., 2013). We propose that ANI-2 regulates the lability of rachis bridges by locally controlling the activity of one or more contractility regulators, either by itself or by competing for their binding with the canonical Anillin ANI-1.

Intercellular bridges between germ cells are found in multiple organisms and were previously proposed to serve a number of possible functions, such as equilibrating gene products between haploid cells, synchronizing germ cell development, enabling the rapid transport of nutrients between cells, and homogenizing gamete quality (Dym and Fawcett, 1971; Guo and Zheng, 2004). Our findings that rachis bridge diameter increases as the rachis is stretched during ovulation and that ANI-2 is important to mediate elastic deformation suggests that intercellular bridges may additionally function to resist sustained mechanical stress. For instance, resistance to mechanical stress could be important for mammalian spermatogonia that migrate as germ cysts across Sertoli cell tight junctions during their maturation (Smith and Braun, 2012), a process that is likely to face great mechanical constraint. Actin-binding proteins, including Anillin, are found at intercellular bridges in many species, but it is currently unclear if a role for Anillin in regulating bridge stabilization is conserved. Interestingly, while a single gene encoding Anillin is present in humans, a shorter spliced isoform lacking the actin-binding domain is expressed in certain tissues (unpublished data). Shorter isoforms such as these could have a function similar to ANI-2 at intercellular bridges and thus play a role in regulated cytokinesis failure and/or intercellular bridge elasticity.
Materials and methods

Strains and alleles
All strains were maintained as described by Brenner (1974) and were grown at 20°C unless otherwise stated. The strains and alleles used in this study are listed in Table S1. Protein depletion by feeding RNAi was performed as described previously (Kamath et al., 2001) using the following individual clones from Julie Arhinger’s library: sj1_K1025 (ani-2), sj1_Y49E10.19 (ani-1), sj1_T055G-3 (cdk-1), sj1_K06G7.3 (gld-1), sj1_T23C1.3 (gld-1), sj1_ZC308.1 (gld-2), sj1_M04B2.1 (mepr-1), and sj1_Y49E10.14 (pie-1). In brief, each clone was grown up to log phase and plated overnight on NGM plates containing 50 µM carbendazim and 1 mM IPTG. All assays were performed on animals grown in the presence of a dsRNA-expressing clone from the L1 stage (ani-1 and gld-1/2) or the L4 stage (all other clones). All clones were verified by sequencing. A vector targeting a gene with no obvious function in embryogenesis or germline formation (sj1_C52E12.1, Chartier et al., 2011) was used as a control.

Transgenic animals expressing ANI-2 fused to GFP under the control of the pie-1 promoter were generated by microparticle bombardment of a vector containing the complete ani-2 coding region (amplified by PCR from genomic DNA) inserted in-frame downstream of sequence coding for GFP, a cleavage site for the TEV protease and S-peptide, as described previously (Cheeseman et al., 2004). The germline localization pattern of this fusion protein is indistinguishable from that observed on fixed specimen using anti–ANI-2 antibodies (Maddox et al., 2005).

The staging of animals during larval development was done according to growth parameters and gonad morphology (Fig. 2 B), using the following criteria. L1 stage: two germ cells (Z- and Zc). L2 stage: multiple germ cells in a single gonad after 15–18 h of growth at 20°C. Early L3 stage: the gonad has split into anterior and posterior regions but the distal arms have not yet started to turn dorsally. Late L3 stage: both distal arms have turned dorsally but have not yet initiated looping. Early L4 stage: both distal arms have looped but the length of the distal arm is shorter than half that of the proximal arm. Mid L4 stage: the length of the distal arm equals half that of the proximal arm. Late L4 stage: the distal arm and proximal arm have the same length, yet no oocyte is visible. 20 and 48 h post-L4 stages: 68 h and 96 h, respectively, after providing food to synchronized L1 larvae at 20°C (animals were confirmed to be in late L4 stage by visual inspection after 48 h of feeding).

Immunofluorescence
To monitor ANI-2 localization, embryos were obtained after cutting open gravid hermaphrodites in 6 µl of M9 buffer with two 25-gauge needles on a 14 × 14-mm patterned Cell-Line slide (Thermo Fisher Scientific) coated with 0.1% poly-lysine. A coverslip was placed on the sample and the slide was placed for at least 5 min on a metal block cooled in dry ice. The coverslip was then removed and the slide was placed immediately in fixative (−20°C methanol:20 µl) for 20 min. The slide was rehydrated twice with 1× PBS for 5 min, then once with 1× PBST (PBS with 0.1% Tween 20) for 5 min, and then incubated in blocking buffer (1× PBST containing 10% goat serum) for 30 min at room temperature. Antibodies were then applied in blocking buffer and incubated overnight at 4°C (primary) or 1 h at room temperature (secondary), each followed by four washes of 5 min in PBST. The fixed specimens were mounted in 90% glycerol containing 1% propyl gallate and a coverslip was sealed. Embryos were visualized with a laser-scanning confocal microscope (LSM 510; Carl Zeiss) equipped with a 63×/1.4 NA Plan Apochromat objective (Carl Zeiss). The following antibodies were used: rabbit anti–ANI-2 antibodies (Maddox et al., 2005), mouse clone DMI A1a anti–a-tubulin (1:500, Sigma-Aldrich), and mouse clone OIC1D4 anti–P granules (1:300; Developmental Studies Hybridoma Bank, University of Iowa, Iowa City, IA). Secondary antibodies were Alexa Fluor 488–coupled goat anti–rabbit, Alexa Fluor 647–coupled donkey anti–mouse (1:500 each; Invitrogen), and Cy3-conjugated donkey anti–rat (1:500; Jackson Immunoresearch Laboratories, Inc.).

Fluorescent imaging of living animals
To analyze rachis length and rachis bridge diameter during ovulation, animals were monitored individually on a coverslip coated with 0.1% poly-lysine and were anaesthetized in 10 µl of egg buffer (Edgar, 1995) containing 0.1% tetramisole (Sigma-Aldrich). The coverslip was placed on a 3% agarose pad and the edges were sealed with petroleum jelly. Time-lapse movies were acquired on a swept field confocal microscope (Nikon and Prairie Technologies), using the 70µm slit setting. A 60×/1.4 NA Plan Apochromatic objective was used to acquire 29 confocal sections (separated by 0.5 µm) of the gonad, each exposed for 200 ms at 30s+ intervals and with minimal laser power to avoid phototoxicity. All acquisition parameters and settings were controlled by Elements software (Nikon). Confocal sections are presented as maximal intensity projections of the entire stacks. The length of the proximal rachis, from gonad turn to the proximal tip, and the diameter of the most proximal rachis bridge were measured for each time point using ImageJ software (National Institutes of Health).

For analysis of rachis bridge formation, synchronized animals of a desired developmental stage were mounted and visualized with a swept field microscope as described above, except that the 35µm slit and 60×/1.4 NA or 100×/1.4 NA objectives were used to acquire confocal sections (separated by 0.5 µm) spanning the entire rachis. When required, different regions of the gonad were acquired separately and reconstructed in a single image using the Photo mergen function in Adobe Photoshop. To monitor rachis bridges, six consecutive confocal sections were analyzed independently (using ImageJ), by measuring fluorescence intensity of expressed fluorescent markers along a 3-pixel-thick line drawn along the lateral and apical cortex, as depicted in Fig. 2 C. Mean fluorescence intensity profiles of each marker were represented along the cortical perimeter. Rachis bridge diameter was determined by measuring the maximal distance between the peaks of fluorescent markers in all analyzed confocal sections. For GFP::ANI-2, GFP::ANI-1, and NMY-2::GFP, peaks were defined as pixels with maximum intensity across the whole fluorescence profile. Distinct peaks were defined as two discrete intensity maxima separated by at least 0.8 µm. For the membrane marker, the fluorescence intensity minimum was defined as the single pixel in the curve with the lowest fluorescence intensity. Peaks were defined as the first measured local maximums of fluorescence intensity, on each side of the minimum, that were maintained over three consecutive pixels and separated by at least 0.8 µm.

To visualize membrane partition collapse between germ cells, L4-stage or young adult animals were mounted and visualized with a swept field microscope as described above, and the 60×/1.4 NA objective was used to acquire 29 confocal sections (separated by 0.75 µm) every 30 s. We could only ascribe two clear membrane collapse events, largely due to several limitations in our experimental conditions: (1) we performed imaging in every region of the gonad; however, imaging was done at high magnification and each time-lapse acquisition encompassed only a small portion of a gonad arm, thus excluding collapse events occurring in regions not being examined during the analysis; (2) while time-lapse acquisitions were done in multiple confocal sections, we felt confident to ascribe a collapse event only when it occurred in germ cells with their nuclei in the same mid-section plane of the gonad; we observed six additional collapse events but the fact that they were occurring more or less along the z-plane made it more difficult to unambiguously ascribe them as such; this is even further exacerbated by the fact that the germline of ani-2 mutants is disorganized and therefore many germ cell nuclei are not found in a single mid-section plane; and (3) membrane collapsing is an event that is likely very rapid and may occur at a frequency beyond the duration of our acquisition time (40 min).

Kymograph analysis of cytoplasmic streaming in the rachis
Living animals were mounted and immobilized as described above. Cytoplasmic movement in the rachis was visualized by differential interference

141

ANI-2 regulates germline syncytial organization • Amini et al.
contrast microscopy, using an HRM camera (Carl Zeiss) mounted on a microscope (Axio Imager Z1; Carl Zeiss). Mid-section images of the rachis were acquired with a Plan Apochromat 63×/1.4 NA objective at 15-s intervals. Kymographs of cytoplasmic movement in the rachis were generated using the multiple kymograph plug-in available for ImageJ, by visualizing particle displacement over time along a 7-pixel-wide line drawn from the pachytyene region to the proximal end of the gonad. The velocity of cytoplasmic streaming was obtained by averaging the speed of at least 25 particles moving around the loop region of each gonad.

Rhodamine-dextran photoactivation
Tetramethylrhodamine-labeled dextran (10 kD; Molecular Probes) was reconstituted to 1 mg/ml in injection buffer (1 M potassium citrate, 6.7 M KPO4, pH 7.5, and 0.67% PEG) and injected into the gonad of adult JH2107 animals (expressing GFP::PGL-1) to visualize the primordial germ cells. After 12 h, embryos were obtained by cutting open the injected gravid hermaphrodites using two 25-gauge needles and mounted individually on a coverslip coated with 0.1% poly-lysine in 10 µl of egg buffer. The coverslip was then sealed pad and the edges were sealed with petroleum jelly. Photoactivation in one of the two primordial germ cells was performed with a 405-nm laser mounted on a confocal microscope (LSM 510; Carl Zeiss) equipped with a 63×/1.4 NA Plan Apochromat objective, and fluorescence was monitored after excitation with a 543-nm laser. Fluorescence intensities were measured using ImageJ software in the photoactivated primordial germ cell, its non-photoactivated sister, and a control neighboring somatic cell.

Statistical analysis
Statistical significance between samples was performed by applying Student’s t test using Microsoft Excel. Assumptions of normality and equal variance were met for all data analyzed. A two-tailed p-value smaller than 0.05 was considered significant. All results are expressed as average ± SD. Sample size (n) and p-values are given on each figure panel or in the figure legends.

Online supplemental material
Fig. S1 shows that ANI-1 and NMY2 localize to the rachis of wild-type hermaphrodites and report on rachis bridge organization. Fig. S2 shows that fluorescent dextran diffuses rapidly in the cytoplasm of an embryonic blastomere. Fig. S3 shows additional evidence that ANI-2 is required for rachis bridge stability. Fig. S4 provides additional details on the phenotypic characterization of ani-2 mutant animals. Video 1 shows time-lapse analysis of gonad elastic deformation during ovulation in a wild-type hermaphroditic. Video 2 shows time-lapse analysis of gonad elastic deformation during ovulation in a hermaphrodite partially depleted of ANI-2. Table S1 lists the 25 particles moving around the loop region of each gonad. Video 2 shows time-lapse analysis of gonad elastic deformation during ovulation in a hermaphrodite partially depleted of ANI-2. Table S1 lists the 25 particles moving around the loop region of each gonad.
Figure S1. ANI-1 and NMY-2 localize to the rachis of wild-type hermaphrodites and report on rachis bridge organization. (A and D) Mid-section confocal images of the germline of wild-type early L3 (top), L4 (middle), and adult (bottom) hermaphrodites coexpressing a membrane marker and GFP::ANI-1 (A) or NMY-2::GFP (D). In all frames, anterior is to the left. Bars, 10 µm. (B and E) Proportion of germ cells showing rachis bridges with a diameter >0.8 µm (turquoise) or <0.8 µm (red) throughout development, as measured by GFP::ANI-1 (B) and NMY-2::GFP (E) fluorescence distribution. (C and F) Maximal rachis bridge diameter in germ cells of animals in various developmental stages, as measured with fluorescence distribution of the membrane marker (red) and GFP::ANI-1 (C, green) or NMY-2::GFP (F, green). Error bars represent SD. In B, C, E, and F, the numbers in brackets represent the total number of germ cells analyzed. The results on rachis bridge organization obtained with these markers are identical to those obtained after analysis of GFP::ANI-2 (Fig. 3).
Figure S2. **Molecule diffusion in the cytoplasm of embryonic blastomeres.** Mid-section confocal images of an embryo expressing GFP::PGL-1 exogenously supplied with photo-convertible rhodamine-dextran. After photoactivation in part of the P3 blastomere, the fluorescent signal rapidly spread throughout the cell. Bar, 10 µm.
Figure S3. **ANI-2 is required for rachis bridge stability.** [A and D] Mid-section confocal images of the germline of a wild-type and an ani-2(−) L4 hermaphrodite expressing a membrane marker (red) and GFP::PGL-1 (A, green) or NMY-2::GFP (D, green). Bar, 10 µm. The regions delineated by the white dashed square are magnified in the inset (bar for insets, 5 µm). [B and E] Proportion of germ cells showing rachis bridges with a diameter >0.8 µm (turquoise) or <0.8 µm (red) in wild-type and ani-2(−) animals at the L3 and L4 larval stages, as measured by distribution of the membrane marker alone (B) or together with NMY-2::GFP (E). [C and F] Maximal rachis bridge diameter in germ cells of wild-type and ani-2(−) animals at the L3 and L4 larval stages, as measured with distribution of the membrane marker alone (red) or together with NMY-2::GFP (green). Rachis bridges that are <0.8 µm in diameter are excluded from this analysis. Error bars represent SD. In B, C, E, and F the numbers in brackets represent the total number of germ cells analyzed. The results on rachis bridge organization obtained with these markers are identical to those obtained after analysis of GFP::ANI-1 [Fig. 4].
Figure S4. Phenotypic analysis of ani-2 mutants. (A) Projected image stacks of fixed extruded gonads from wild-type (left) and ani-2(−) young adult hermaphrodites immunostained with SYP-1 (red), HTP-3 (green), and DAPI (blue). Arrows point to germ cells with defect in diakinesis. Each image was assembled from multiple acquisitions of the same gonad. Bar, 20 µm. (B) Schematic representation of the gonad and images of one gonad in wild-type and ani-2(−) mutant early L3 stage larvae. Rachis diameter was measured in multiple regions and confocal sections of the gonad (red line). The graph represents the average diameter of the rachis in wild-type and ani-2(−) mutant L3 stage larvae. Rachis diameter is significantly reduced in ani-2(−) mutants compared with the wild type. (C) Schematic representation of the gonad and images of one gonad in control and ani-1(RNAi) adult animals. Figure elements are as in B. Rachis diameter is significantly increased in ani-1(RNAi) animals compared with control. (D) Time-lapse confocal images of a germline stem cell dividing in the gonad of an ani-2(−) hermaphrodite. The cell properly progresses through all stages of M phase. Bar, 5 µm. (E) Mid-section confocal images of the germline of wild-type and ani-2(−) adult hermaphrodites expressing a membrane marker (green) and mCherry::Histone H2B (red). Blocking cell cycle progression with cdk-1(RNAi) (right) did not preclude germ cell multinucleation, indicating that it is not a consequence of inappropriate reentry into the cell cycle. Bar, 10 µm.
Video 1. *Analysis of gonad elastic deformation during ovulation in a wild-type hermaphrodite.* Time-lapse movie of the gonad of a wild-type hermaphrodite expressing GFP::ANI-2 (green) and a membrane marker (red) captured during ovulation. Images were captured every 30 s with a swept field confocal microscope (Nikon), and maximal-intensity projections are played at 10 images/s.

Video 2. *Analysis of gonad elastic deformation during ovulation in a hermaphrodite partially depleted of ANI-2.* Time-lapse movie of the gonad of a hermaphrodite partially depleted of ANI-2 and expressing GFP::ANI-2 (green) and a membrane marker (red) captured during ovulation. Images were captured every 30 s with a swept field confocal microscope (Nikon), and maximal-intensity projections are played at 10 images/s.

Table S1. *C. elegans* strains used in this study

<table>
<thead>
<tr>
<th>Strain no.</th>
<th>Wild-type Bristol strain</th>
</tr>
</thead>
<tbody>
<tr>
<td>N2</td>
<td>Wild-type Bristol strain</td>
</tr>
<tr>
<td>VC703</td>
<td>ani-2(ok1147)/mIn1[mIs14 dpy-10(e128)] II</td>
</tr>
<tr>
<td>OD95</td>
<td>unc-119[ed3] III; lts37 [Pie-1::mCherry::his-58; unc-119(+)] IV; lts38 [Pie-1::gfp::PH(PLC1delta1); unc-119(+)]</td>
</tr>
<tr>
<td>UM185</td>
<td>unc-119[ed3] III; lts44 [Pie-1::mCherry::PH(PLC1delta1); unc-119(+)] IV; axls1720 [Pie-1::gfp::pgl-1; pgl-1 3'; unc-119(+)]</td>
</tr>
<tr>
<td>UM186</td>
<td>ani-2(ok1147)/mIn1[mIs14 dpy-10(e128)] II; lts44 [Pie-1::mCherry::PH(PLC1delta1); unc-119(+)] IV; axls1720 [Pie-1::gfp::pgl-1; pgl-1 3'; unc-119(+)]</td>
</tr>
<tr>
<td>UM208</td>
<td>unc-119[ed3] III; lts81 [Pie-1::gfp::TEV::ani-2; unc-119(+)] IV; lts44 [Pie-1::mCherry::PH(PLC1delta1); unc-119(+)] IV</td>
</tr>
<tr>
<td>OD182</td>
<td>unc-119[ed3] III; lts28 [Pie-1::gfp::TEV::ani-1; unc-119(+)] IV; lts44 [Pie-1::mCherry::PH(PLC1delta1); unc-119(+)] IV</td>
</tr>
<tr>
<td>UM341</td>
<td>ani-2(ok1147)/mIn1[mIs14 dpy-10(e128)] II; unc-119[ed3] III; lts28 [Pie-1::gfp::TEV::ani-1; unc-119(+)] IV; lts44 [Pie-1::mCherry::PH(PLC1delta1); unc-119(+)] IV</td>
</tr>
<tr>
<td>OD183</td>
<td>unc-119[ed3] III; lts44 [Pie-1::mCherry::PH(PLC1delta1); unc-119(+)] IV; zuls45 [Pnmy-2::nmy-2::gfp; unc-119(+)] V</td>
</tr>
<tr>
<td>UM342</td>
<td>ani-2(ok1147)/mIn1[mIs14 dpy-10(e128)] II; unc-119[ed3] III; lts44 [Pie-1::mCherry::PH(PLC1delta1); unc-119(+)] IV; zuls45 [Pnmy-2::nmy-2::gfp; unc-119(+)] V</td>
</tr>
<tr>
<td>JH2107</td>
<td>unc-119[ed3] III; axls1720 [Pie-1::gfp::pgl-1; pgl-1 3'; unc-119(+)]</td>
</tr>
<tr>
<td>UM209</td>
<td>ani-2(ok1147)/mIn1[mIs14 dpy-10(e128)] II; lts37 [Pie-1::mCherry::his-58; unc-119(+)] IV; lts38 [Pie-1::gfp::PH(PLC1delta1); unc-119(+)]</td>
</tr>
<tr>
<td>JK2879</td>
<td>gld-2(q497) gld-1(q485) I/hT2[qIs48] II; lts37 [Pie-1::mCherry::his-58; unc-119(+)] IV; lts38 [Pie-1::gfp::PH(PLC1delta1); unc-119(+)]</td>
</tr>
<tr>
<td>UM230</td>
<td>gld-2(q497) gld-1(q485) I/hT2[qIs48] II; lts37 [Pie-1::mCherry::his-58; unc-119(+)] IV; lts38 [Pie-1::gfp::PH(PLC1delta1); unc-119(+)]</td>
</tr>
</tbody>
</table>