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associated genes (Ramachandran et al., 2010a), and Notch itself 
(Wang et al., 2010; Gökbuget et al., 2015), necessary for her4.1 
induction (Gemberling et al., 2013; Zhao et al., 2014a). Inter-
estingly, our results show that Myc collaborates with Hdac1 to 
cause a decline in her4.1 expression. The Her4.1 would proba-
bly suppress lin28a expression, causing a yin-yang relationship 
as part of restricting the zone of proliferation after focal injury. 

The results of double blocker experiments with DAPT and 10058-
F4 in retina support this view. We find coexistence of increased 
her4.1 and decreased lin28a levels when both Notch signaling 
and Myc were blocked simultaneously. This mechanism may also 
underlie the possible cause of lack of MGPC induction in Her/
Hes overexpressed retina (Wan et al., 2012). Moreover, the de-
creased Lin28a levels could cause an increase in let-7 microRNA 

Figure 8. Her4.1 restricts the zone of MGPCs by suppressing lin28a expression. (A and B) RT-PCR (A) and qPCR (B) show decreased her4.1 induction 
and increased regeneration-associated genes’ levels with DAPT treatment relative to DMSO control in 2-dpi retina. UC, uninjured control. *, P < 0.002. (C and 
D) IF microscopy shows that increased MGPCs seen in DAPT-treated (40 µM) retina is blocked both by 10058-F4 (10 µM) and mycb-targeting morpholino 
(500 µM; C) with ∼70% and ∼85% reduction in BrdU+ cells compared with DMSO control and DAPT-treated retina, respectively (D). *, P < 0.003; **, P < 0.0001;  
***, P < 0.0002. Bars, 10 µm; white asterisks mark the injury sites (C). (E–G) Western analysis of Ascl1a and Mycb show reduction in protein levels, in 10058-F4 
(10 µM) + DAPT- (40 µM) blocker regimen (E); also other regeneration-associated genes seen by RT-PCR (F) and qPCR (G) compared with DMSO, 10058-F4, 
or DAPT-treated retinae in 2 dpi. GS, glutamine synthetase. n = 3 biological replicates in all experiments. ONL, outer nuclear layer; INL, inner nuclear layer. 
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in DAPT and 10058-F4–treated retina, which could bring down 
the protein levels of Myca, Mycb, and Ascl1a, as reported ear-
lier (Ramachandran et al., 2010a), causing a reduction in the 
number of MGPCs.

Our data suggest that Myc plays important roles in different 
phases of retina regeneration (Fig. 9, A and B). First, it contrib-
utes in MG reprogramming to generate MGPCs through Ascl1a 
and Lin28a. Second, it restricts the zone of MGPCs through 
Her4.1–Lin28a axis. Finally, our studies unraveled important 
mechanisms by which Mycs and Hdacs mediate these effects 
through mutual signaling pathways, involving Ascl1a, Insm1a, 
Lin28a, and Her4.1, in retina regeneration. It is intriguing to 
speculate that GCL-specific rapid induction of mycb after optic 
nerve lesion also may significantly contribute to its regeneration 
in zebrafish. These studies suggest that Mycs and subsequent 
gene regulatory network are essential for retina regeneration, 
providing insights into signaling mechanisms that may help in 
understanding MG reprogramming in the injured mammalian 
retina, also with reference to damaged human retinae toward 
successful repair.

Materials and methods
Animals, fin cut, retinal injury, and drugs
Zebrafish were maintained at 26–28°C on a 14/10 h light/dark 
cycle. The 1016 tuba1a:​gfp transgenic fish used in this study have 
been previously described (Fausett and Goldman, 2006). Em-
bryos for all assays were obtained by natural breeding. The Myc-
Max inhibitor, 10058-F4, and Notch-signaling blocker, DAPT, 
were made to a stock of 1 mM in DMSO for various experiments 
(all drugs were from Sigma-Aldrich). Drugs were delivered ei-
ther by dipping or injected into the eye using a Hamilton syringe 
with a 30-G needle. Retinal injury or optic nerve lesions were 
performed as described previously (Fausett and Goldman, 2006; 
Veldman et al., 2010). Fish were anaesthetized transiently in tr-
icaine methane sulphonate, and the right eye was gently pulled 
from its socket and the retina stabbed four to eight times (once 

or twice in each quadrant) through the sclera with a 30-G needle 
inserted up to the length of the bevel. Optic nerve lesions were 
performed similarly, except that damage was not done to retina 
or blood vessel while cutting the optic nerve. Both retinal injury 
and optic nerve lesion were performed under a dissection scope 
(Stemi DV4; Zeiss). All experiments were done to a minimum of 
three times for consistency and SD.

Primers and plasmid construction
All primers are listed in Table S1. The promoters of mycb and 
her4.1 were amplified from zebrafish genomic DNA using primer 
pairs XhoI-mycb pro-F and BamHI-mycb pro-R (∼3 kb) or 
XhoI-her4.1pro-F and BamHI-her4.1 pro-R (∼4 kb), respectively. 
The digested PCR amplicons were cloned into a pEL luciferase 
expression vector to create mycb:​gfp​-luciferase and her4.1:gfp- 
luciferase constructs. The ascl1a:​gfp​-luciferase, lin28a:​gfp​
-luciferase, and insm1a:​gfp​-luciferase construct was described 
previously (Ramachandran et al., 2010a, 2012). The lin28a pro-
moter site-directed mutagenesis was done as described previ-
ously (Ramachandran et al., 2010a). GFP was amplified from 
pEGFP-C1 plasmid with BamH1-EGFP-F and EcoR1-EGFP-R and 
cloned into pCS2+ vector.

Genes like ascl1a, myca, mycb, insm1a, and lin28a were cloned 
from cDNA amplified from zebrafish retina RNA at 4 dpi using 
primer pairs BamHI-ascl1a FL-F and XhoI-ascl1a FL-R (∼0.6 kb); 
BamHI-myca-F and XhoI-myca-R (∼1.2 kb); BamHI-mycb-F and 
XbaI-mycb-R (∼1.2 kb); BamHI-insm1a-F and XhoI-insm1a-R 
(∼1.1 kb); and BamHI-lin28a FL-F and XhoI-lin28a FL-R (∼0.6 
kb). Post-digested PCR amplicons were cloned into their respec-
tive enzyme sites in pCS2+ plasmid to obtain cmv:​ascl1a, cmv:​
myca, cmv:​mycb, cmv:​insm1a, and cmv:​lin28a.

Total RNA isolation, RT-PCR, and qPCR analysis
Total RNA was isolated from dark-adapted zebrafish retinae of 
control, injured, and drug-treated/MO-electroporated group 
using TRIzol (Invitrogen). Combination of oligo-dT and random 
hexamers were used to reverse transcribe 5 µg of RNA using 

Figure 9. The gene regulatory network 
mediated through Myc/Hdac/Ascl1a/Lin28a/
Her4.1 in MGPCs and neighboring cells. (A and 
B) The proposed model that depicts the mecha-
nisms of genetic interaction of various regener-
ation-associated factors discussed in this study, 
shown separately in MGPCs (A) and neighboring 
cells (B) during retina regeneration. The interac-
tions and molecules that are active are shown in 
black, and passive ones are in gray.
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Superscript II reverse transcription (Invitrogen) to generate 
cDNA. PCR reactions used Taq or Phusion (New England Bio-
labs) DNA polymerase and gene-specific primers (Table S1) with 
previously described cycling conditions (Ramachandran et al., 
2010a). qPCR was performed in triplicate with KOD SYBR qPCR 
mix (QKD-201; Genetix) as per manufacturer’s recommendations 
on a real-time PCR detection system (Eppendorf Master Cycler 
RealPlex4). The relative expression of mRNAs in control and in-
jured retinae was deciphered using the ΔΔCt method and normal-
ized to ribosomal protein l-24 or β-actin mRNA levels.

mRNA synthesis, embryo micro-injection, ChIP, and Co-IP assay
Various gene clones in pCS2+ plasmids having cDNA inserts 
were linearized, and capped mRNAs were synthesized using 
the mMES​SAGE mMAC​HINE (Ambion) in vitro transcription 
system. For luciferase assay experiments, single-cell zebrafish 
embryos were injected with a total volume of ∼1 nl solution, 
containing 0.02 pg of Renilla reniformis luciferase mRNA (nor-
malization), 5 pg of promoter:​gfp​-luciferase vector, and 0–6 pg of 
ascl1a, insm1a, or mycb mRNA. To assure consistency of results, 
a master mix was made for daily injections and ∼300 embryos 
were injected at single-cell stage. 24 h later, embryos were di-
vided into three groups (∼70 embryos/group) and lysed for dual 
luciferase reporter assays (E1910; Promega).

ChIP assays to analyze endogenous Ascl1a or Mycb binding to 
various promoters in adult retina at 2 and 4 dpi were performed 
using ∼50 adult retinae after dark adaptation. Chromatin was 
isolated by sonication as described previously (Lindeman et al., 
2009). The chromatin obtained after a brief fixing in 1% (vol/
vol) formaldehyde for 10 min in room temperature and subse-
quent nuclear lysis were the starting material. The chromatin 
after sonication to make fragments of 500–800 bp in size was 
distributed into three equal aliquots; two were probed with an 
anti-zebrafish Myc and Ascl1a antibodies (described below), and 
the third served as a control. The antibody binding was done at 
4°C with rotation. Using magnetic beads, the antibody bound 
chromatin were pulled down on magnetic rack. After washing, 
the chromatins were purified to obtain PCR-grade DNA using 
standard proteinase K, phenol chloroform extract before PCR 
analysis. Primers used for ChIP assays are described in Table 
S1. Co-IP was performed using the retinal lysate that were ex-
tracted using lysis buffer as per manufacturer’s recommenda-
tions and protocol reported elsewhere (Phizicky and Fields, 1995; 
Bonifacino et al., 2016). Co-IP was similar to ChIP in initial steps, 
except that the final eluted sample was run on an acrylamide 
gel, transferred onto a polyvinylidene fluoride membrane and 
probed with respective antibodies against proteins of the inter-
action complex obtained.

Morpholino electroporation, mRNA transfection, and 
knockdown-rescue
Lissamine-tagged MOs (Gene Tools) of ∼0.5  µl (0.5–1.0  mM) 
were injected at the time of injury using a Hamilton syringe of 
10-µl volume capacity. MO delivery to cells was accomplished by 
electroporation as previously described (Fausett et al., 2008). An 
ECM 830 Electro Square Porator (BTX) was used to electropo-
rate the retina for MO delivery. BTX830 were adjusted to deliver 

five consecutive 50-ms pulses at 70 V with a 950-ms interval 
between pulses, using BTX electrodes of 0.5-cm diameter. The 
control and ascl1a-targeting MOs have been previously described 
(Ramachandran et al., 2012). Morpholinos targeting myca, mycb 
and hdac1 are myca MO, 5′-AAC​TCG​CAC​TCA​CCA​GCA​TTT​TGAC-
3′; 2-myca MO, 5′-TTT​AAC​GAA​TGC​CGT​TCC​AGA​ATTG-3′; mycb 
MO, 5′-CCA​TAC​TTG​AAT​TCA​GCG​GCA​TGGT-3′; 2-mycb MO, 5′-
GAG​TGC​CGT​AGC​CGT​GGT​AAA​AGCT-3′; insm1a MO, 5′-GCT​TGA​
CTA​AAA​ATC​CTC​TGG​GCAT-3′; and Ctl MO, 5′-CCT​CTT​ACC​TCA​
GTT​ACA​ATT​TATA-3′.

Transfection mixture contained two solutions constituted in 
equal volumes: (1) 4–5 µg of mRNA mixed with HBSS and (2) li-
pofectamine messenger max reagent (LMR​NA001; Invitrogen) 
mixed with HBSS. Both the solutions were allowed to stand at 
room temperature for 10 min and then mixed drop wise, followed 
by 30-min incubation at room temperature. The resultant solu-
tion was mixed with morpholino in equal proportion, and 0.5 µl 
of this mixture was used for injection in zebrafish retina, fol-
lowed by electroporation as described earlier.

In vivo rescue experiments were designed for testing the 
specificity of myca and mycb MO antisense oligos. This was ac-
complished by transfection of zebrafish retina with gene-specific 
mRNA alongside the MO-targeting 5′ UTR region of concerned 
genes or control MO. For confirming the efficient mRNA trans-
fection, GFP mRNA was also delivered by transfection in each 
experimental or control retina.

BrdU/EdU labeling, retina tissue preparation for mRNA ISH, 
immunofluorescence (IF) microscopy, TUN​EL assay, and 
Western blotting
BrdU labeling was performed by single i.p. injection of 20 µl of 
BrdU (20 mM) 3 h before euthanasia and retina dissection, unless 
mentioned specifically. Some animals required for long-term cell 
tracing experiments received more BrdU injections over multiple 
days. Fish were given higher dose of tricaine methane sulpho-
nate, and eyes were dissected, lens removed, fixed in 4% PFA, and 
sectioned as described previously (Fausett and Goldman, 2006). 
mRNA ISH was performed on retina sections with fluorescein or 
digoxigenin-labeled complementary RNA probes (FL/DIG RNA 
labeling kit; Roche Diagnostics; Barthel and Raymond, 2000). 
Fluorescence ISH was performed according to the manufacturer’s 
directions (T20917, B40955, and B40953; Thermo Fisher Scien-
tific). Sense probes were used in every ISH separately as control 
to assess the potential of background signal. IF microscopy proto-
cols and antibodies were previously described (Ramachandran et 
al., 2012). IF microscopy was performed using rabbit polyclonal 
antibody against human ASCL1/MASH1 (ab74065; Abcam); rat 
monoclonal antibody against BrdU (ab6326; Abcam); mouse 
monoclonal antibody against human PCNA (sc-25280; Santa 
Cruz); rabbit polyclonal antibody against zebrafish Myca/b 
(Schreiber-Agus et al., 1993; AS-55477; Anaspec); rabbit poly-
clonal antibody against zebrafish Hdac1 (Harrison et al., 2011; 
Ab41407; Abcam); mouse polyclonal antibody against GFP (ab-
38689; Abcam); rabbit polyclonal antibody against GFP (ab-6556; 
Abcam); and rabbit polyclonal antibody against mouse gluta-
mine synthetase (Ramachandran et al., 2010b; ab93439; Abcam) 
at 1:500 dilution. Before BrdU IF microscopy, retinal sections 
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were treated with 2 N HCl at 37°C for 20 min, equilibrated with 
100 mM sodium borate (pH 8.5) for 10 min twice, and then pro-
cessed using standard procedures (Senut et al., 2004).

Proliferating cells were labeled by intravitreal injection of 
0.5 µl of 10 mM EdU solution dissolved in DMSO. A fresh injury 
was made near the cornea with a Hamilton Syringe of 10-µl ca-
pacity for intravitreal injection. Eyes were enucleated after 4 h, 
followed by cryoprotection as described elsewhere. EdU-labeled 
cells were detected by treating 8-µg retinal sections with Click-iT 
EdU Reaction cocktail (Click-iT TM EdU Alexa Fluor 647 Imaging 
kit; C10340; Thermo Fisher Scientific) prepared as per manufac-
turer’s instructions. In brief, after the fluorescence ISH (FISH) 
protocol, retinal sections were fixed with 4% PFA at room tem-
perature for 20 min, followed by permeabilization with 1% BSA 
in PBS with Triton X-100 (PBST) at room temperature for 10 min 
and blocking with 3% BSA in PBST for half an hour. After block-
ing, 100 µl of Click-iT reaction cocktail was overlaid with glass 
coverslips for half an hour, followed by washing with 1% BSA in 
PBST. EdU-labeled cells were detected by confocal microscopy.

BrdU-labeled MGPC lineage-tracing experiments were done 
in retinal sections from single-eye sections of 8-µg thickness, dis-
tributed across five slides. Individual slide was first processed for 
IF-based detection of specific antigen or Mrna, and then BrdU or 
PCNA staining was performed as mentioned above using respec-
tive antibodies (Powell et al., 2012; Ramachandran et al., 2012). 
The total number of BrdU+ cells and the number of colabeled 
BrdU+ cells that also stained with a specific ISH probe and subse-
quent enzymatic reaction were quantified on each slide. TUN​EL 
assay was performed on retinal sections using In Situ Cell Death 
Detection Fluorescein kit (11684795910; Roche) as per manufac-
turer recommended protocol. Western blotting was performed 
using whole retina tissue from four retinae per experimental 
sample, lysed in Laemmli buffer, size-fractioned in 12% acryl-
amide gel with SDS at denaturing conditions, before transferring 
onto Immun-Blot polyvinylidene fluoride membrane (162-0177; 
Biorad Catalogue), followed by probing with specific primary an-
tibodies, and HRP-conjugated secondary for chemiluminescence 
assay using Clarity Western ECL (170-5061; Biorad Catalogue).

Fluorescence and confocal microscopy and cell counting
After the staining experiments, the slides were examined with 
a Nikon Ni-E fluorescence microscope equipped with fluores-
cence optics and Nikon A1 confocal imaging system equipped 
with apochromat 60×/1 NA oil immersion objective lens. Imag-
ing of bright field is done using Nikon DS-L3 camera attached 
onto the same microscope, as mentioned above. Cell counts were 
quantified by physically observing fluorescently labeled ISH, 
PCNA, or BrdU+ cells in retinal sections, visualized in the same 
microscope. We used 20× for low magnification and 40× or 60× 
oil objective with an NA set to 1 in almost all images. Images were 
from cryosections mounted on Super Frost Plus slides (Thermo 
Fisher Scientific), embedded with DAB​CO mounting medium in 
every retinal section discussed. The imaging was always done 
at room temperature. The confocal images were finally pro-
cessed through deconvolution using the software NIS-Elements 
software and ImageJ. The final images were imported to Adobe 
Photoshop software (CC 2018) for conversion to 300 dpi. Every 

sections of the stained retina were mounted, observed, and an-
alyzed, and at least three retinae from separate fish were used.

Fluorescence-based cell sorting
RNA and Chromatin was obtained from FACS-purified MG 
and MG-derived progenitors at 4 dpi, as previously described 
(Ramachandran et al., 2011, 2012). In brief, uninjured and injured 
retinae were isolated from 1016 tuba1a:​gfp transgenic fish. GFP+ 
MGPCs from 1016 tuba1a:​gfp retinae at 4 dpi were isolated by 
treating retinae with hyaluronidase and trypsin and then sorted 
on a BD FACS Aria Fusion high speed cell sorter. Approximately 
40 injured retinae from 1016 tuba1a:​gfp fish yielded 80,000 
GFP+ and 170,000 GFP− from DMSO-treated fish (20 retinae) 
and 40,000 GFP+ and 220,000 GFP− (20 retinae) from 10058-F4–
treated retinae.

Statistical analysis
Observed data were plotted and analyzed using standard spread-
sheet software (Microsoft Excel). All data, unless specified, rep-
resent mean with SD as error bar. Data distribution was assumed 
to be normal, but this was not formally tested. The statistical 
significance by comparisons of datasets was done using a two-
tailed unpaired Student’s t test for all experiments. For all other 
comparisons, ANO​VA was performed, and subsequently, a Bon-
ferroni–Dunn post hoc t test was done using Stat View software.

Online supplemental material
Fig. S1 shows the Myc and Max gene regulation during retina and 
optic nerve regeneration and development. Fig. S2 shows that 
knockdown of myca and mycb, separately and in combination, 
during regeneration decrease cell proliferation. Fig. S3 shows 
the rescue and expression dynamics of myc genes in retina and 
TUN​EL assay with its blockade. Fig. S4 shows the regulation of 
regeneration-associated genes through Myc. Fig. S5 shows that 
Delta–Notch signaling and Myc show an interdependency during 
regeneration. Table S1 lists the DNA oligonucleotide primers 
used in this study.
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