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Figure 6. Comparison of elF5A recognition by Pdr6 and Xpo4. (A) H,,-ZZ-bdSUMO-tagged Pdr6 and Xpo4 (1 uM) were incubated with either human or
yeast elF5A (2 pM) in the presence of RanGTP (2 uM). Formed complexes were retrieved via tagged NTRs, eluted by (the tag-cleaving) bdSENP1 protease, and
analyzed by SDS-PAGE and Coomassie blue staining. The identity of each protein band is as indicated in the figure. Note that yeast elF5A and Ran bands
partially overlap in both panels. (B) 1 uM NTR and RanGTP was incubated with 0.75 uM ZZ-bdSUMO-tagged elF5A wild type or mutants in a 50 mM NaCl
buffer. Formed complexes were retrieved via tagged elF5A, eluted by bdSENP1 protease, and analyzed by SDS-PAGE and Coomassie blue staining. (C and D)
Ribbon representation of RanGTP+Pdr6.+elF5A (C) and RanGTP-Xpo4+elF5A complexes (D) are shown. Structures are aligned with respect to the first three
HEAT repeats of Pdr6 and Xpo4 and shown in the same orientation as in Fig. 2 D. Pdr6 is depicted with a color gradient from gray (N-terminus) to blue
(C-terminus) while Xpo4 is from gray to magenta. Ran and elF5A are shown in green and orange, respectively. (E) Sequence alignment of human and yeast
elF5A. Identical residues are shaded in orange and the hypusine-modified lysine in red. Blue and magenta dots represent elF5A residues that contact Pdr6 and
Xpo4, respectively.

molecules. Furthermore, 1148°1F54 and S149¢F5A contact N441Pdr6
and stabilize the OB-fold interactions (Fig. S4 B).

Ran does not only interact with eIF5A directly but also pro-
motes Pdr6-eIF5A contacts by bringing the N- and C-terminal
arches of Pdr6 (which stay apart in the Pdré « Ubc9 complex and

of an allosteric mechanism and free energy supplied by the
cargo-RanGTP interaction.

Discussion

probably also in Pdré apo structure) closer to each other.
Therefore, the cooperativity is accomplished by the combination
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Pdré has so far been a rather poorly studied shuttling NTR
with just two import cargoes, subunits of TFIIA and a Wtml
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Figure 7. Structure of the yeast elF5A export complex. (A and B) View of the trimeric export complex in two different orientations. (A) The complex is
shown as a surface representation. Pdr6 is depicted with a color gradient from gray (N-terminus) to blue (C-terminus) while Ran is shown in green, and elF5A is
in orange. (B) The complex is rendered as a ribbon representation. Domains of elF5A are labeled and shaded accordingly. (C) Pdr6+RanGTP and elF5A are
shaded according to electrostatic potential with a color gradient from red (negatively charged, —10 kcal/mol) to blue (positively charged, +10 kcal/mol).

Pdr6<RanGTP is shown in the same orientation as in B while elF5A is rotated 180°.

ribonucleotide reductase complex, being known. In the accom-
panying paper (Vera Rodriguez et al., 2019), we reevaluated its
cargo spectrum and identified not only Ubc9 as a novel import
cargo but also export cargoes, namely, the translation elongation
factors eIF5A and eEF2, as well as the membrane trafficking
components Pill and Lspl. This defines Pdré as a bidirectional
NTR or a biportin. In this study, we report the structures of key
transport intermediates, namely, of the Ubc9e+Pdré import
complex, of the Pdr6«RanGTP intermediate, and of the el-
F5A « Pdr6 « RanGTP export complex. These structures not only
illuminate how the RanGTPase system drives Pdré-dependent
transport in and out of the cell nucleus but also reveal rather
unusual modes of cargo recognition.

The transport signals recognized by Pdré are folded domains.
This puts Pdr6 apart from Importin a and CRMI, which recog-
nize linear peptides, namely, canonical NLSs and NESs, re-
spectively. It can be easily understood how Importin o and CRM1
can each handle a broad spectrum of cargoes if these carry the
same type of NLS or NES for docking into the same dedicated
binding sites of the transporters.

It is, however, rather unclear, how Pdré can carry multiple
import and export cargoes. Since these have different folds and
share no structural similarity, we would assume that different
binding sites are used for different cargoes, whereby each of
these sites should respond to RanGTP. Such multispecificity is a
fascinating case of molecular recognition. Howevere, its com-
prehension requires solving more structures, namely, of the
export complexes with eEF2 and the BAR domain proteins Lspl
and Pill, as well as import complexes with TFIIA and Wtml.

We focused on two transport cargoes, namely, elF5A and
Ubc9. elIF5A is a rather small (17-kD) protein that functions in
cytoplasmic translation but readily leaks into nuclei. Pdre-
mediated export should be seen as part of the cell’s effort to
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suppress nuclear translation and not to waste cellular resources
in mislocalized proteins. In addition, it is well possible that the
inappropriate presence of eIF5A inside nuclei interferes with
nuclear processes related, for example, to RNA metabolism and/
or ribosome biogenesis. Pdré exports elF5A with its 255 RNA-
and tRNA-binding sites being blocked. This poses the question of
why it has to be exported in such a chaperoned fashion and not
through an appended NES as hundreds of other cytoplasmic
proteins.

We see several possible answers. Translation is a highly op-
timized process with highly optimized translation factors. Pos-
sibly, an NES appendix compromises eIF5A’s activity in
translation. Considering that translation is one of the most
resource-requiring cellular processes, even a small negative ef-
fect could have a negative impact on fitness. An NTR that adopts
to a fully optimized translation factor is, therefore, a good so-
lution to such a problem. Furthermore, chaperoning the cargo
might help to cleanly “extract” eIF5A from the nucleus without
coexporting interacting molecules.

Our structure of the Ubc9«Pdré import complex revealed
that Pdré is transporting Ubc9 in an inhibited state with blocked
interaction sites for the E1 SUMO-activating enzyme with SUMO
E3 ligases and SUMOylation substrates. This raises the questions
of why this should be an advantage and why Ubc9 import does
not occur along the classical importin a/f pathway with a ca-
nonical NLS being appended to the molecule.

We see two possible answers. First, the addition of a (typi-
cally lysine-rich and positively charged) NLS might compromise
the SUMOylation specificity of Ubc9, for example, through in-
appropriate electrostatic interactions or by acting as an intra-
molecular SUMO acceptor. Second, transporting Ubc9 through
an appended NLS would imply that Ubc9 remains enzymatically
active while bound to the import receptor. This might be
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dangerous because the shuttling transport receptor might
then become a target of inappropriate (over-) SUMOylation.
The same would apply to NPC components that contact the
transiting NTRe«Ubc9 complex, whereby a SUMOylation of
FG repeat domains could compromise the selectivity of the
FG-based permeability barrier of NPCs. Diverting Ubc9 im-
port from the major (Importin o/p-dependent) pathway and
transporting it in a safe-locked state appears, therefore, a
perfect solution to this problem. This assumption is supported
by the fact that, with Impl3, mammals found a fully inde-
pendent solution for Ubc9 import, which features a funda-
mentally different mode of cargo recognition yet follows the
same principle of carrying the SUMO-conjugating enzyme
safely locked in a state of inactivity.

Materials and methods

Protein expression and purification

Recombinant mouse Xpo4, human RanQ69L (5-180), human
elF5A, and S. cerevisiae eIF5A variants, as well as human Impl3,
were expressed and purified as previously described (Aksu et al.,
2016; Vera Rodriguez et al., 2019).

For crystallization, Pdré was expressed as an N-terminal
His14-ZZ-bdSUMO fusion in Escherichia coli Topl0 F'. The cells
were resuspended in buffer A (50 mM Tris/HCI, pH 7.7, 500 mM
NaCl, and 2 mM DTT) and lysed by sonication on ice. The clar-
ified lysate was incubated with a Ni (II) chelate matrix in the
presence of 15 mM imidazole/HCI, pH 7.7. The matrix was loaded
to a gravity flow column. The column was first washed with
buffer A supplemented with 25 mM imidazole, and Pdr6 was
later eluted by 250 nM of the tag-cleaving bdSENPI protease
(Frey and Gérlich, 2014). The eluate was subjected to a Superdex
200 16/60 gel filtration column (GE Healthcare) equilibrated
with buffer B (20 mM Tris/HCl, pH 7.7, 150 mM NacCl, and 2 mM
DTT). For phasing, selenomethionine-substituted Pdré was ex-
pressed in BL21 cells grown in minimal medium supplemented
with lysine, phenylalanine, threonine, isoleucine, leucine, va-
line, and selenomethionine. Selenomethionine-labeled Pdr6
was purified using the same protocol as for unmodified Pdre.
The DTT concentration was increased to 5 mM during the
purification.

For binding assays, Pdré, mouse Xpo4, and human Impl13 (see
Table Sl for constructs) were expressed in E. coli Topl0 F’ cells
and purified by following the above protocol. After washing the
columns, the NTRs were eluted either by bdSENP1 protease or
by imidazole elution using buffer A supplemented with 500 mM
imidazole.

Ubc9 and elF5A variants were expressed in NEB Express cells
and purified by Ni (II) chelate chromatography and elution by a
tag-cleaving protease (for binding assays) or imidazole elution
(for crystallization).

RanQ69L (residues 5-180) was expressed as an N-terminal
His14-ZZ-bdSUMO fusion in E. coli ToplO F’ cells. The cells were
lysed in buffer C (50 mM Hepes/KOH, pH 8.2, 500 mM NaCl,
2 mM MgCl,, and 2 mM DTT). Ran was bound in the presence of
20 mM imidazole from the cleared lysate to a Ni (II) chelate
matrix and eluted with bdSENPI protease as described above.
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Reconstitution and crystallization of complexes

To prepare the Pdr6+Ubc9 complex, Hisl4-bdNEDD8-tagged
Ubc9 was mixed with a 1.1-molar excess of Pdré in 20 mM
Tris/HCl, pH 7.7, 50 mM NaCl, and 5 mM DTT. After overnight
incubation on ice, the sample was supplemented with 5 mM
imidazole, and the complex was immobilized on a Ni (II) chelate
matrix via tagged Ubc9. Unbound proteins were removed; Ubc9
and the bound Pdré were eluted by bdNEDPI protease. The el-
uate was subjected to a Superdex 200 16/60 gel filtration column
equilibrated with 20 mM Tris/HCl, pH 7.7, 50 mM NaCl, and
2 mM DTT. The purified complex was concentrated to 10 mg/ml.

Diffraction-quality crystals were obtained at 18°C by mixing
1 pl protein solution with 1 pl reservoir solution containing
50 mM sodium cacodylate, pH 5.7, 20 mM MgCl,, and 3-5%
ethanol. Crystals were slowly transferred to a cryoprotectant
solution (50 mM sodium cacodylate, pH 5.70, 20 mM MgCl,, 15%
ethanol, and 30% polyethylene glycol [PEG] 400) and flash-
frozen in liquid nitrogen.

For Pdr6e«RanGTPeelF5A complex formation, Hisl4-ZZ-
bdNEDD8-tagged eIF5A was mixed with 1.2-molar excess of
Pdré and RanGTP in 20 mM Tris/HCl, pH 7.7, 50 mM NaCl,
5 mM MgCl,, and 5 mM DTT. The complex was obtained
as described above. After size exclusion chromatography in
20 mM Tris/HCl, pH 7.7, 50 mM NaCl, 5 mM MgCl,, and 2 mM
DTT, the purified complex was concentrated to 12 mg/ml and
supplemented with 2.5 mM Tris(2-carboxyethyl)phosphine
hydrochloride.

Initial Pdré « RanGTP crystals were obtained at 18°C by mix-
ing 1 ul Pdr6 « RanGTP«eIF5A complex with 1 pl reservoir so-
lution containing 50 mM sodium acetate, pH 5.5, 220 mM
MgCl,, 19% pentaerythritol propoxylate (17/8 PO/OH), and 10%
2-Methyl-2,4-pentanediol. These crystals lacked eIF5A, which
was probably dissociated from the rest of the complex during
crystallization due to high salt concentration. Similar crystals
were also obtained by using 10 mg/ml Pdré « RanGTP complex
prepared as described above but omitting eIF5A. These crystals
were directly flash-frozen in liquid nitrogen.

Pdr6 « RanGTP « eIF5A crystals were obtained at 18°C by mi-
croseeding hanging drops by mixing 1 pl of the protein solution
with 1 pl reservoir solution containing 100 mM sodium acetate,
pH 5.3, and 30% PEG 300. Crystals were slowly transferred to a
cryoprotectant solution (100 mM sodium acetate, pH 5.3, 45%
PEG 300, and 10% glycerol) and flash-frozen in liquid nitrogen.

Structure determination and analysis

All diffraction data were collected at beamline X10SA at the
Swiss Light Source. For the Pdr6 « RanGTP structure, seven da-
tasets from five crystals were merged, integrated, and scaled
with XDS (Kabsch, 2010). SHELXD (Schneider and Sheldrick,
2002) was used to locate the 26 selenium sites. Initial phases
were obtained by MR with PHASER (McCoy, 2007) using Ran
(PDB 3GJX; Monecke et al., 2009) as the search model. The re-
sulting information and position of selenium atoms were used to
obtain the electron density map in AutoSol Wizard (Terwilliger
et al., 2008, 2009) in the Phenix suite (Adams et al., 2002).
Model building was performed with RESOLVE and BUCCANEER
(Cowtan, 2006) by using AutoBuild Wizard (Terwilliger et al.,
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2008) in Phenix and with COOT (Emsley and Cowtan, 2004).
Iterative cycles of refinement using phenix.refine (Afonine
et al., 2012) were done after each round of model building.

The Pdr6.Ubc9 dataset was processed in XDS (Kabsch,
2010). The structure was solved by MR in PHASER (McCoy,
2007). For a successful MR solution, Pdré structure was sepa-
rated into two rigid bodies (residues 3-510 and 560-1,076).
Placement of Pdré revealed the electron density for Ubc9. The
structure of yeast Ubc9 (PDB 2GJD; van Waardenburg et al.,
2006) was placed into electron density manually. The model
was manually adjusted in COOT (Emsley and Cowtan, 2004),
rigid-body refined, and then subjected to all-atom refinement
for five cycles in phenix.refine (Afonine et al., 2012).

The RanGTPe«Pdr6eelF5A dataset was processed in XDS
(Kabsch, 2010). Analysis of the dataset in Xtriage revealed 28%
twinning. The structure was solved by MR in PHASER (McCoy,
2007) using the Pdré « RanGTP structure described above. Den-
sity modification in AutoBuild (Terwilliger et al., 2008) revealed
the electron density for eIF5A. A yeast eIF5A homology model
(created in SWISS-MODEL; Bordoli et al., 2009) based on human
elF5A (PDB 5DLQ; Aksu et al., 2016) was manually placed into
the density. The model was manually adjusted in COOT (Emsley
and Cowtan, 2004) and all-atom refined for 20 cycles using h,-h-
k,-1 twin law in phenix.refine (Afonine et al., 2012). The quality
of all final models was assessed with MolProbity (Chen et al.,
2010). All figures were prepared using UCSF Chimera (Pettersen
et al., 2004).

Binding assays

For Ubc9 compatibility assays (Fig. 3 D), 1 pM Hy,-ZZ-
bdSUMO-tagged NTR (Pdr6 or Imp13) was incubated with either
human or yeast Ubc9 (2 uM).

For eIF5A compatibility assays (Fig. 6 A), 1 uM H,,-ZZ-
bdSUMO-tagged NTR (Pdré or Xpo4) was incubated with either
human or yeast eIF5A (2 pM) in the presence of 2 uM RanGTP.

For elF5A mutant tests (Fig. 6 B), 1 uM NTR (Pdré or Xpo4)
and RanGTP were incubated with 0.75 uM ZZ-bdSUMO-tagged
elF5A wild type or mutants in a 20 mM Tris/HCl, pH 7.7,
100 mM NaCl, 2 mM MgOAc, and 2 mM DTT buffer.

Formed complexes were retrieved via tagged proteins by
anti-Protein A beads, eluted by (the tag-cleaving) bdSENP1
protease, and analyzed by SDS-PAGE and Coomassie blue
staining.

Data depositions

The coordinates and structure factors have been deposited in the
PDB with accession code 6Q82 for PdréeRanGTP, 6Q83 for
Pdré6 « Ubc9, and 6Q84 for RanGTP « Pdr6 « eIF5A.

Online supplemental material

Fig. S1 shows Pdr6  Ubc9-binding interfaces and demonstrates
the potentially interacting residues. Fig. S2 depicts recognition
of Ran’s switches by Pdré N- and C-terminal residues. Fig. S3
highlights RanGTP-interacting regions of NTRs and shows a
sequence alignment of the first three HEAT repeats. Fig. S4
shows Pdré6-elF5A-interacting residues. Table S1 lists the plas-
mids used in this study.
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