STUDIES ON THE ORGANIZATION
OF THE BRUSH BORDER IN
INTESTINAL EPITHELIAL CELLS

I. Tris Disruption of Isolated Hamster Brush Borders
and Density Gradient Separation of Fractions

ALEXANDER EICHHOLZ and ROBERT K. CRANE

From the Department of Biochemistry, The Chicago Medical School, Chicago, Illinois

ABSTRACT

Brush borders isolated from the epithelial cells of hamster jejunum have been dissociated
by treatment with 1 M Tris(hydroxymethyl)aminomethane into several subfractions which
can be separated by means of centrifugation on glycerol density gradients. Investigation of
the chemical specificity of disrupting agents suggests that the amino group of Tris, in its
positively charged state, is involved. Five individual bands or fractions have been routinely
recovered from density gradients. The distribution of alkaline phosphatase and maltase
activities among these fractions has been studied and the results indicate that both enzymes
are predominantly associated with one fraction which has been identified in a companion
paper as being composed of the membranes of the brush border microvilli. A fibrillar
material of unidentified origin has also been obtained from Tris-disrupted brush borders.

During the past few years, various investigations
along several independent lines have revealed the
brush border of the epithelial cells of the small
intestine to be an exquisitely differentiated sub-
cellular organelle in which certain of the digestive
and absorptive capacities of the cell appear to be
fixed, possibly in intimate molecular juxtaposition.
The process of sugar absorption, which is a par-
ticularly clear example of sodium ion-dependent
active transport (2, 3), occurs in the brush border
(11), as do the disaccharidases (12) which are
responsible for the terminal stages of carbohydrate
digestion and provide the substrates for absorption.
Alkaline phosphatase (5) and leucine aminopep-
tidase (9, 14) are localized there also, along with
an ATPase (17) which has characteristics permit-
ting the assumption that it represents an energy-
dependent sodium ion pump. What is now needed
is a knowledge of the relationship of these enzymic
and functional activities to one another and their
identification with the various morphological ele-
ments of the brush border.

Biochemical studies, particularly of the influence
of sodium ions and phlorizin on the in vitro ac-
cumulation of sugars released by disaccharidase
action (2, 15), have provided a limited amount of
information on the relative localization of digestive
and absorptive functions. The data permit the
tentative conclusion that these two functions, at
least with regard to sugars, are close to the free
cell surface and are so positioned that the products
of disaccharidase activity are formed near the site
of absorption. Alkaline phosphatase has been lo-
calized histochemically in the plasma membrane
of the microvilli (1), and the biochemical studies
suggest a similar localization for the disacchari-
FIGURE 1 Photograph of a typical density gradient separation of Tris-disrupted brush borders.

dases. Such studies, taken in connection with modern concepts of membrane transport (19), have permitted the construction of hypotheses which have structural implications and are consistent with available information but for which there is as yet no evidence based upon an enzymic or functional analysis of microvillus fine structure.

The availability of a method for obtaining the brush border portion of the intestinal epithelial cell as a discrete entity substantially free of contamination by other subcellular organelles (13) provides a starting point for further fractionation. The present report describes a method of fractionating hamster brush borders into several distinct subfractions. A preliminary report of this work has been given (7).

METHODS

PREPARATION OF BRUSH BORDERS: Brush borders were prepared by a slight modification of the method of Miller and Crane (13). The modification involved the use of a Powerstat variable transformer at a setting of 90 to decrease the speed of blade rotation in the Waring Blendor, a decrease in time of homogenization to 15 seconds, and filtering of the homogenate through No. 25 bolting silk. Larger contaminants were removed by centrifugation in an International Clinical Centrifuge at its lowest setting for 1 minute. Hamster brush borders, prepared in this way, were substantially free of other particles, as determined by light microscope and by electron microscope.

DISRUPTION OF BRUSH BORDERS: Washed brush borders were disrupted in the cold, by addition of a volume of freshly prepared 1.0 M Tris (pH 7.0) equal to 4 times the weight of the original mucosa, and stirring on a Vortex mixer for 3 minutes.

DENSITY GRADIENT CENTRIFUGATION: Both continuous and discontinuous gradients were used. The stepwise gradients were prepared by successive introduction of 20, 30, 40, 50, and 60 per cent glycerol solutions containing 0.5 mM MgCl₂ through a syringe to the bottom of the centrifuge tubes. The continuous glycerol gradient was formed by mixing a 60 and 20 per cent glycerol solution according to the method of Tung and Taylor (18). Centrifugation was carried out for 10 minutes at 63,000 g in a Spinco Model L Ultracentrifuge using either an SW 25.1 or an SW 39-L swinging bucket type rotor. The rotor was accelerated manually at a slow rate. Fractionation of the contents of the centrifuged tubes was carried out either by puncture through the bottom of the tube or by an especially designed syringe device (8) which permitted collection of small fractions from the top without disturbing the precipitate. The collected fractions were then dialyzed against distilled water overnight and then against 0.005 M EDTA for several hours. Dialysis is necessary since glycerol at high concentration has been found to inhibit several of the disaccharidases.

ENZYME ASSAYS: Disaccharidase activities were measured as described by Dahlqvist (4). Glucose was estimated with the glucose oxidase reagent on a Technicon autoanalyzer. Alkaline phosphatase was measured by the rate of splitting of p-nitrophenylphosphate (Sigma Chemical Co.) in a glycine buffer (0.05 M) at pH 10.5 using 0.2 mM MgCl₂, 2 mM Zn acetate, and 5 mM CoCl₂ as cofactors.

PROTEIN DETERMINATION: Protein was estimated by the use of the Lowry method (10) using crystalline bovine serum albumin as a standard.

RESULTS AND DISCUSSION

Separation of Components of Brush Borders

When hamster brush borders are treated with 1 M Tris as described above and the resulting suspension is examined under a phase contrast microscope, identifiable brush borders are found to have disappeared and to be replaced by a collection of smaller fragments having a variety of shapes and sizes. When such a suspension is layered on a density gradient and centrifuged as above, it sepa-
rates into several bands which can be localized by the Tyndall effect from a strong light passed vertically through the tube. Fig. 1 is a photograph of a representative gradient showing the position of the bands obtained. Bands C and D of the gradient have been studied with the electron microscope, and the morphology of their components is described in the accompanying paper (16).

Upon recovery and recentrifugation on another gradient, fraction A tends to agglomerate and precipitate, fractions B and C again yield single bands, and fraction D remains homogeneous if disruption is carried to completion. However, if fraction D is dialyzed against distilled water and shaken vigorously on the Vortex mixer, the large structures of which this fraction is composed break up into smaller fragments which have not been identified.

Formation of Fibrillar Material

In earlier studies of guinea pig brush borders, a gel-like material was obtained when the brush borders were treated with distilled water and

<table>
<thead>
<tr>
<th>Compound</th>
<th>Immediate effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris analogues</td>
<td></td>
</tr>
<tr>
<td>2-Amino, 2-methyl-1,3-propanediol</td>
<td>+++</td>
</tr>
<tr>
<td>2-Amino, 2-methyl-1-propanol</td>
<td>+++</td>
</tr>
<tr>
<td>tert-Butylamine</td>
<td>++</td>
</tr>
<tr>
<td>2,2-Dimethyl-1,3-propanediol</td>
<td>--</td>
</tr>
<tr>
<td>2-Hydroxymethyl, 2-methyl-1,3-propanediol</td>
<td>--</td>
</tr>
<tr>
<td>Amines other than Tris analogues</td>
<td></td>
</tr>
<tr>
<td>Choline</td>
<td>--</td>
</tr>
<tr>
<td>Acetylcholine</td>
<td>--</td>
</tr>
<tr>
<td>Tetramethylammonium</td>
<td>-- slight distortion</td>
</tr>
<tr>
<td>Triethanolamine</td>
<td>+++</td>
</tr>
<tr>
<td>Ethanolamine</td>
<td>+++</td>
</tr>
<tr>
<td>Histamine</td>
<td>+++</td>
</tr>
<tr>
<td>N-Butylamine</td>
<td>++</td>
</tr>
<tr>
<td>Urea</td>
<td>+++</td>
</tr>
<tr>
<td>Non-ionic organic compounds</td>
<td></td>
</tr>
<tr>
<td>d-Glucose</td>
<td>+ --</td>
</tr>
<tr>
<td>d-Mannitol</td>
<td>+ --</td>
</tr>
<tr>
<td>d-Fructose</td>
<td>+ --</td>
</tr>
<tr>
<td>L-Sorbose</td>
<td>+ --</td>
</tr>
<tr>
<td>Glycerol</td>
<td>--</td>
</tr>
<tr>
<td>Ethanol</td>
<td>--</td>
</tr>
<tr>
<td>Organic anions</td>
<td></td>
</tr>
<tr>
<td>Ethylenediamine tetraacetate 0.05 M</td>
<td>--</td>
</tr>
<tr>
<td>Inorganic ions</td>
<td></td>
</tr>
<tr>
<td>Sodium phosphate</td>
<td>+ --</td>
</tr>
<tr>
<td>Ammonium chloride</td>
<td>+ --</td>
</tr>
<tr>
<td>Sodium chloride</td>
<td>+ --</td>
</tr>
<tr>
<td>Potassium chloride</td>
<td>+ --</td>
</tr>
<tr>
<td>Sodium hydroxide, pH 9.0</td>
<td>--</td>
</tr>
<tr>
<td>Magnesium chloride</td>
<td>+ --</td>
</tr>
</tbody>
</table>
shaken on the Vortex mixer (6). Upon the addition of salt to the gel, fibrillar material was precipitated which was found to have an absorption spectrum in the ultraviolet and a content of organic phosphate suggestive of nucleic acid. In the present studies, dilution of Tris-disrupted hamster brush borders with distilled water or 0.05 M EDTA in a ratio of 1:2 or higher yields a fibrillar material apparently similar in composition to that described above. Judged from the ability to form fibers and from the ultraviolet absorption spectrum, this material appears to be concentrated within bands A and B of the density gradient.

Studies on the Nature of Disruption

Though the mechanism of disruption with Tris remains unknown, a certain degree of specificity is indicated by the fact that only a few of the many compounds tested acted like Tris, which disrupts brush border preparations almost immediately after their addition and a short mixing period. Most compounds either did not disrupt brush borders at all or caused visible deformation only after prolonged standing. Table I summarizes the behavior of the compounds tested. From the fact that analogues of Tris and other compounds having no amino group exhibit no activity, it is clear that disruption requires an amine.

In studying the pH dependence of the process, it was found that Tris disrupted in the pH range between 5 and 7.5, distorted brush borders at pH's 3 and 8, and had no effect at pH 9 and 10. This finding, taken together with the fact that quaternary amines do not appear to disrupt (see Table I), indicates that ionization of the amine is required but that a positive charge on the nitrogen alone is not enough: a replaceable hydrogen must be present. It would appear therefore that the following minimal structure is necessary for the disruption:

\[R-N\, = \, H \]

The role of the amine in disruption and the nature of the disrupted bond are not known. One possibility is that, in a lipid environment of the brush border, bonding involves an ionic or hydrogen bond which can be disrupted by a hydrogen exchange mechanism, and that the solubility characteristics of the disrupting compound account for the larger part of the specificity for disruption.

The concentration of the disrupting substance appears to be critical. All the active compounds tested showed little activity at or below 0.2 M. They deformed brush borders at 0.5 M, and disrupted at 0.6 M or above. Upon density gradient centrifugation of particles disrupted by amines other than Tris, bands very similar to those formed after disruption with Tris were obtained.

Distribution of Alkaline Phosphatase and Maltase after Density Gradient Centrifugation

Fig. 2 illustrates the distribution of alkaline phosphatase and maltase activities along the density gradient prepared as described above. The highest total and specific activities of alkaline phosphatase and maltase were found in fraction C. This finding strongly suggests that this fraction is

![Figure 2](https://jcb.rupress.org/content/26/4/690.full.png)
derived from the plasma membrane of the microvilli. High recoveries (80 to 90 per cent) of enzymatic activities can be obtained in fraction C if the brush borders are subjected to prolonged and vigorous mixing during disruption with tris. It is also of interest that alkaline phosphatase and maltase activities do not separate if fraction C is recovered, sonicated, and recentrifuged on a gradient, although the material separates into several distinct bands. Fraction A contains a large amount of protein but substantially none of the measured enzymatic activities.

BIBLIOGRAPHY

Alexander Eichholz and Robert K. Crane Brush Border, I 691