INTESTINAL CAPILLARIES

II. Structural Effects of EDTA and Histamine

FRANCESCO CLEMENTI and GEORGE E. PALADE

From The Rockefeller University, New York 10021. Dr. Clementi's present address is Universita degli Studi, Istituto di Farmacologia e di Terapia, Milan, Italy

ABSTRACT

Perfusion of the fenestrated capillaries of the intestinal mucosa of the rat with 0.05-0.1 M EDTA removes the diaphragms of the endothelial cells and detaches these cells from one another and from the basement membrane. The latter, even when completely denuded, retains effectively particles of 340 Å (average) diameter. Perfusion with histamine (1 µg/ml) results in partial removal of fenestral diaphragms, occasional detachment of the endothelium from the basement membrane, and focal separation of endothelial intercellular junctions.

In a previous paper, we have shown that horseradish peroxidase and ferritin, used as probe molecules for the small and large pore system, respectively, leave the capillaries of the intestinal mucosa through the fenestrae of the endothelium (1). Since these fenestrae, usually provided with an aperture or diaphragm (2-4), appear to be important pathways for plasma-interstitial fluid exchanges, we decided to investigate their response to agents known to affect capillary permeability such as EDTA1 (5, 6) and histamine (7, 8).

METHODS

The experiments were carried out on male Sprague Dawley rats of 250-300 g weight, heparinized and anesthetized with chloral hydrate (35 mg/100 g body weight, given intraperitoneally). To obtain a better control of the composition of the intravascular medium, the drugs were administered by perfusion instead of being given systemically. The aorta was cannulated below the diaphragm with polyester tubing (0.062-in. O.D. PE 160 Intramedic) which was connected through a 37° thermostatic bath with reservoirs suspended at 150 cm above the animal. EDTA was perfused at 0.025, 0.05, or 0.1 M concentration, dissolved in Ca2+- and Mg2+-free carbonated saline (9); before use, the pH of the solution was adjusted to 7.2 with 0.2 N KOH. Histamine at 0.1, 0.2, and 1 µg/ml was dissolved in Earle's solution (10) containing 3% bovine serum albumin. Two to four rats were perfused with each drug concentration. Control rats were perfused with the same media without drugs. All perfusates contained 0.957% Evans blue, to facilitate the recognition of satisfactorily perfused regions, and carbon black2 (11), or colloidal gold3 (12) as tracers for electron microscopy. The size range of the particles was 230-480 Å for carbon black, and 30-300 Å for colloidal gold. 10 min after beginning the perfusion, pieces of well perfused intestinal loops were fixed in 1% OsO4 in 0.1 M phosphate buffer containing 3% sucrose.

1 Batch C11/1431a. The ink was diluted 50 times in the perfusate to give a final concentration of 2 mg/ml.
2 Aurocoloid TM-198 obtained after complete radioactivity decay from Abbott Laboratory, Teterboro, N.J. The original concentration, 2.5 mg/ml, was raised to ~10 mg/ml in a flash evaporator.
3 The average diameter of these particles was 340 Å; the suspension contained, in addition, small clusters of particles up to 2100 Å in diameter.
General Abbreviations: l, lumen; en, endothelium; bm, basement membrane.

Figs. 1-6 show blood capillaries in the lamina propria of the intestinal mucosa (rat) after 10-min perfusion with 0.1 M EDTA in Ca\(^{2+}\)-, Mg\(^{2+}\)-free saline. Carbon particles (India ink) were added to the perfusate as tracers.

FIGURES 1 and 2 The endothelial fenestrae (arrows) have lost their diaphragms and appear greatly enlarged. Through the patent fenestrae, the carbon particles (c) of the perfusate reach the basement membrane (bm), but do not penetrate beyond it. In the center of Fig. 1, part of the capillary wall consists only of the basement membrane. Note the pronounced fibrillar texture of the latter in Fig. 2. Fig. 1, X 17,000; Fig. 2, X 54,000.

m phosphate buffer (pH 7.4) for 2 hr, at ~0°. The blocks were subsequently stained in uranyl acetate for 30 min at 4° (13), dehydrated in graded ethanol, and finally embedded in Epon (14). Sections prepared with a Reichert OM U2 or a Servall MT2 microtome, and stained with uranyl acetate and lead citrate (15), were examined in a Hitachi HU 11C or a Siemens Elmiskop I electron microscope.

OBSERVATIONS

Intestinal capillaries, perfused with Ca\(^{2+}\)- and Mg\(^{2+}\)-free saline for up to 10 min or with Earle's
solution containing albumin, retained their normal appearance. Beyond 10-15 min, there was a pronounced increase in the number of flaps and filiform pseudopodia protruding from the endothelium into the capillary lumen, presumably on account of anoxia (see 16); otherwise, the endothelial cells seemed normal. After long perfusion with Ca\(^{++}\)- and Mg\(^{++}\)-free saline, a slight edema developed in the lamina propria in between the capillaries and the epithelium. Irrespective of the duration of perfusion, carbon particles were always retained within capillary lumina.

Perfusion for 10 min with 0.025 M EDTA did not cause any visible modification of capillary structure. However, when the concentration was increased to 0.05 M, the endothelial cells began to detach from the basement membrane, leaving behind a relatively wide and irregular subendothelial space. In addition, they thickened in places and acquired a highly irregular profile which suggested an increase in the number of pseudopodia and vacuoles. When the concentration of EDTA was raised to 0.1 M, damage to the capillary wall was more pronounced. The fenestrae of the endothelium lost their diaphragms, enlarged, and were frequently replaced by wide, patent discon-

FIGURE 3 No endothelial remnants are visible in this field. The basement membrane (bm), which is impermeable to the tracer, shows clearly its fibrillar texture. Collagen fibrils in the lamina propria are marked cf. × 48,000.

FIGURE 4 Parts of the completely detached endothelium (en) are still visible in the capillary lumen (l). The carbon particles (c) of the perfusate reach the basement membrane (bm) which retains them effectively. × 40,000.
The intercellular junctions were generally loosened, and the cells often appeared separated from one another by gaps or large channels. In many cases, part of the endothelium detached from the basement membrane and retracted leaving a large part of the latter directly exposed to the perfusate (Figs. 3, 4). Eventually, all the endothelial cells detached from one another and from the basement membrane to turn into freely floating cellular elements in the lumen (Fig. 5). At this point, extended regions of the capillary wall consisted only of the basement membrane (Fig. 6) which appeared slightly thickened and showed a looser, more distinctly fibrillar texture (Figs. 3, 4) than in controls. Although extensively denuded and visibly altered, the basement membrane generally retained carbon black particles; only occasionally a few of them were found embedded in the basement membrane or free in the pericapillary spaces (Fig. 6). The basement membrane also retained most colloidal gold particles larger than ~200 Å. Such particles only occasionally escaped to the interstitia, while particles smaller than 200 Å passed through and were often found in the pericapillary spaces. Although escaped particles ranged in size up to ~900 Å, no channels of appropriate dimensions were seen in the basement membrane in their vicinity. Hence, we assume that these channels must be extremely rare and possibly transient.

Perfusion with histamine at 0.1 µg/ml had no effect on the structure of the capillary wall. When the concentration was increased to 0.2 µg/ml, edema developed under the epithelium, and in many capillaries a variable but generally small percentage of the diaphragms closing the fenestrae disappeared (Fig. 7); some of the patent fenestrae enlarged, and carbon particles began leaving the lumina through them (Figs. 8–11). However, the endothelial cells did not detach from one another or from the basement membrane and did not retract. The frequency of altered capillaries in-
creased when the intestine was perfused with 1 µg/ml of histamine, but the modifications remained limited primarily to the loss of diaphragms by part of the fenestral population. Only occasionally we encountered focal separation of the endothelial cells from the basement membrane and from one another resulting, in the last case, in rather limited areas of exposed basement membrane. The latter successfully retained most carbon black particles, as it did in the EDTA experiments already mentioned.

DISCUSSION

The importance of Ca²⁺ in the regulation of capillary permeability, presumably by binding the endothelial cells together with a protein-Ca "cement," has been recognized for more than 30 years (17–20). Hence it was expected that EDTA, a powerful Ca-complexing agent, will affect capillary permeability and related structural features in the capillary wall. In fact, "stasis" accompanied by an increase in permeability has already been recorded by light microscopy in the capillaries of EDTA-irrigated mesentery (9).

Our findings give more precise indications, at a pertinent dimensional level, on structural alterations which are caused by EDTA, and which appear to be directly related to increased permeability in the fenestrated capillaries of the intestinal mucosa. Some of these alterations, e.g., separation

1 In contradistinction to the capillaries of the intestinal mucosa, mesenteric capillaries have a continuous (nonfenestrated) endothelium (36).
Figs. 7–11 show blood capillaries in the lamina propria of the intestinal mucosa (rat) after 10-min perfusion with 3% serum albumin in Earle's solution containing 1 µg/ml histamine. Carbon particles were added to the perfusate as tracers.

FIGURE 7 The treatment has not affected the intercellular junction (j) but has led to partial detachment of the endothelium from the basement membrane and disappearance of the apertures of two (arrows) of the six fenestrae seen in this field. X 66,000.

FIGURES 8–11 These figures show individual fenestrae which have lost their diaphragms and through which carbon particles reach the basement membrane (Figs. 9–11). Fig. 8, X 85,000; Fig. 9, X 67,000; Fig. 10, X 73,000; Fig. 11, X 80,000.
of endothelial cells from one another and from the basement membrane, were to be expected in view of the known importance of Ca2+ in cell-to-cell and cell-to-substrate adhesion (21, 22, see also 23). Another, i.e., the removal of fenestral apertures, is entirely novel, at least as far as we are aware. It implies that Ca2+ is necessary either for binding together the components of the aperture, presumably proteins (24) and polysaccharides (25), into a thin film, or for anchoring the latter in the fenestral frame, or for both. It also has some interesting functional implications, since our recent work (1) has established that the apertured fenestrae represent the small pore system, and has suggested that permanently or transiently patent fenestrae correspond to the large pore system in this type of capillaries.

The effects of histamine are only in part similar to those of EDTA; the drug removes a certain percentage of fenestral apertures, but affects much less extensively and intensively than EDTA cell junctions and endothelium-basement membrane adhesion. The mechanism of histamine action cannot be explained at present, since the chemical nature of its receptors is unknown. Ca2+ is apparently required for histamine activity, presumably histamine-receptor interaction (26–28), and exogenous histamine administered per os is known to be concentrated in the intestinal mucosa (29), which is already richer than other tissues in endogenous histamine (30). These points, especially the high local concentration, might have some bearing on the effects observed. In any case, it should be pointed out that in the intestinal mucosa the site of action (i.e., capillaries) and the type of structural alteration observed (i.e., removal of fenestral apertures) are different from those described in the muscle vasculature where the vessels affected are small venules (50–200 µm in diameter) and possibly the venous ends of capillaries (11), and where the structural effect consists in focal separations of endothelial cells along their junctions (31).

Another finding that deserves comment is the extensive but incomplete impermeability of the basement membrane to particles larger than \(\sim 200\) Å. Previous work has established that this membrane is freely permeable to horseradish peroxidase (diameter \(\sim 50\) Å) and ferritin (diameter \(\sim 100\) Å) in muscular (32, 33) as well as intestinal (1) capillaries. The new finding indicates that in visceral capillaries, as in the small vessels of muscle (31), skin (34, 35) and mesentery (36, 37), the basement membrane can function as an additional, coarser permeability barrier when denuded. Each layer of the capillary wall thus appears to have its own permeability characteristics. Hence, the pore theory (38, 39) should be considered with this conclusion in mind. For the small pore system, the size-limiting, structural discontinuities must be located exclusively in the endothelium, and the same apparently applies for the large pore system as far as particles smaller than \(\sim 200\) Å are concerned. For larger particles, however, discontinuities or channels equal to, or larger than, \(700\) Å must be postulated in the basement membrane, in addition to the patent fenestrae in the endothelium. Our observations suggest that the endothelial and basement membrane components of the large pore system are rarely in register with one another. Hence, upon their escape through a fenestra, particles larger than \(\sim 200\) Å must diffuse over relatively large distances in the subendothelial space until they gain access to an appropriately sized channel through the basement membrane.

Finally, our observations indicate that in addition to its role of second line permeability barrier, the basement membrane functions as a structural support of the capillary wall, a view already advanced and discussed by Pienk (40) and by Pease (41). Even in the quasi-complete or complete absence of the endothelium, the basement membrane maintains the general form of the vessel, keeps it open as a circulation channel, and acts as an effective partition between the channel lumina and the interstitia of the tissue, at least for particles larger than \(\sim 200\) Å.

This work was supported by United States Public Health Service Grant HE 05648.

Received for publication 31 January 1969, and in revised form 28 April 1969.

REFERENCES

3. Rhoden, J. A. G. 1962. The diaphragm of capill-

Allergic inflammation. I. The earliest fine structural changes at the blood tissue barrier during antigen-antibody interaction. Amer. J. Pathol. 42:41.

