THE DISTRIBUTION OF ALBUMIN SYNTHESIS THROUGHOUT THE LIVER LOBULE

GERHARD SCHREIBER, RAINER LESCH, URSULA WEINSENN, and JOSEF ZÄHRINGER
From the University of Freiburg, Institutes of Biochemistry and of Pathology, 7800 Freiburg im Breisgau, Germany

INTRODUCTION
The membrane-attached polysomes of the liver cells are assumed to be the intracellular site of albumin synthesis (for recent critical review see Campbell (1)). The histological localization of albumin by fluorescent antisera has been described repeatedly (3, 5-7). It is not possible, however, to decide whether albumin localized in the cell by this technique is newly synthesized, or taken up by the cells from the blood, or simply adsorbed during preparation.

In radioautographs we observed predominant labeling of the periportal area of the liver lobules after intraportal injection of leucine-3H, whereas intracaval injection led to uniform labeling throughout the lobule. The way of administration of the tracer thus permits a study of protein synthesis of selected regions of the liver lobule.

Recently, the isolation of radiochemically pure albumin from liver homogenates and a method to determine the proportion of albumin to total protein synthesis have been described (9).

In this report the ratio of albumin to total protein synthesis after intraportal injection was compared to that after intracaval injection. By combining these results with the radioautographic observations, it was possible to decide whether or not albumin synthesis was distributed uniformly throughout the liver lobule.

MATERIALS AND METHODS
Animals and biochemical methods have been described previously (8, 9).

For radioautography small pieces of liver were fixed in 0.75 M sodium phosphate buffer of pH 7.0 with 4% formaldehyde for 24 hr at 4°C, dehydrated in ethanol, and embedded in paraffin blocks. Slices of 5 µ and control slices from unlabeled livers were cut and transferred to the same microscopical slides. Paraffin was removed by alcohol, methylbenzoate, and xylene. The slices were washed twice for 20 min in 0.76 mM nonradioactive leucine and then dipped into Ilford K5 liquid emulsion (Ilford Ltd., Ilford, Essex, England). After 24 days' exposure at 18°C and after photographic development, radioautographs were stained through the emulsion with Mayer's hemalum, made transparent by 70% ethanol with 4 vol % of 1 N HCl, rinsed in running tap water, and dried.

The density of silver grains was determined by leading a measuring diaphragm of 552 µ² around the central and the periportal areas of the liver lobule.
lobule and measuring the light reflected by the silver grains in a microscope equipped with a photomultiplier (4). The pulses of the photomultiplier were recorded as "working units" by a Knott analog digital counter. Two animals were measured after intraportal, and two after intracaval injection of the label. Almost identical values were obtained within each group. The obtained values were averaged after subtraction of the background, which was determined with unlabeled slices. After intraportal injection, 100 positions of the diaphragm were measured, each over the central area and the periporal area. After intracaval injection, 107 positions were counted over the periporal, and 110 over the central area. The number of background measurements was 43 for intraportal and 42 for intracaval injection, respectively. The density of the silver grains ranged from 0 to 70 grains per 10 \(\mu \)\(^2\), after subtraction of the background. In this range, working units were increasing linearly with the number of grains per measured area. Average background density was 10.9 grains per 10 \(\mu \)\(^2\).

RESULTS AND DISCUSSION

Distribution of Leucine in the Liver after Intracaval and Intraportal Injection

After opening the abdomen by a median incision, 0.2 mCi of L-leucine-4,5-\(^3\)H\(_2\)/100 g of body weight, 1 Ci/mmole, dissolved in 0.9% NaCl in a concentration of 1 mCi/ml, was injected into the caval vein or into the portal vein of about 3-month old male rats of an average body weight of 250 g. The animals were kept under ether anesthesia during the experiments. Ether anesthesia does not influence the incorporation of amino acids into albumin and total liver protein (2). Livers were removed 10 min later, and the distribution of the label in protein was studied by radioautography. Radioactivity was found to be incorporated uniformly throughout the liver lobule, when leucine was injected into the caval vein (Fig. 1). The peripheral region of the liver lobule was predominantly labeled if leucine had been injected into the portal vein (Fig. 2). The results of a quantitative analysis of the distribution of the incorporated label are presented in Fig. 3. The number of measured areas was plotted against the density of silver grains found within the area. We cannot yet give an experiment-based explanation for the observed differences of the distribution of incorporated label.

Comparison of the Synthesis of Albumin and Total Protein

The incorporation of intravenously injected amino acids into liver protein is influenced by the...
size of the amino acid pool in the blood, the permeability of the cell membrane, the size of the amino acid pool inside the cells, the activity of the amino acid activating enzymes, the concentrations of tRNA's, etc. To be independent of variations in the absolute amount of amino acid incorporation, the incorporation into albumin was compared to that into total protein. For this purpose, two groups of eight rats each were injected intracavally or intraportally with 16 µCi of L-leucine-1-¹⁴C/100 g of body weight, 51 mCi/mmol, dissolved in 0.9% NaCl in a concentration of 100 µCi/ml. Livers were removed after 10 min. At this time no albumin has yet been secreted by the liver (9). The livers were homogenized and albumin was isolated from the homogenates to constant specific radioactivity as previously described (9). The results are summarized in Table I. The specific radioactivity of purified albumin was multiplied by its concentration in the homogenate. The obtained value was then divided by the radioactivity in total protein per ml of homogenate. After intracaval injection of radioactive leucine, the ratio of the incorporation into albumin to that into total protein was 3.5%, whereas after intraportal injection 2.8% of total protein radioactivity was found in albumin.

Distribution of Albumin Synthesis throughout the Liver Lobule

When the injection of radioactive amino acid was given by the intracaval route, the distribution of radioactive protein was uniform throughout the liver lobule. Under these circumstances the
proportion of radioactivity in the whole liver that was present in serum albumin, compared with total protein, was about 3%. Under conditions where the incorporation of radioactivity was confined virtually to the periphery, i.e. intraportal injection, the proportion of radioactivity in serum albumin, compared with total protein, was also about 3%. If the synthesis of serum albumin is greater in the periphery than in the interior of the liver lobule, the proportion of radioactive albumin to total protein in the periphery would have to exceed 3%. This was not the case. Hence, the capacity to synthesize albumin is distributed uniformly between the periphery and interior of the liver lobule.

SUMMARY

Injection of radioactive leucine into the caval vein of rats led to uniform labeling of protein throughout the liver lobule. Injection into the portal vein produced labeling of protein predominantly in the peripheral regions of the lobule. After both kinds of injection procedures, albumin was purified from liver homogenates to constant specific radioactivity. The ratio of the radioactivity incorporated into albumin to that incorporated into total protein was the same in both cases; hence, the capacity to synthesize albumin was distributed equally between the peripheral and the central regions of the liver lobule.

We are grateful to Dr. P. Dörmer, Munich, for the permission to use his microscopical photometer and automatic counting system.

This work was supported by grants of the Deutsche Forschungsgemeinschaft, Bad Godesberg, Germany, The Anna Fuller Fund, New Haven, Conn., U.S.A., and the Stiftung Volkswagenwerk, Hannover, Germany.

Received for publication 28 February 1970, and in revised form 21 April 1970.

REFERENCES

Table I

<table>
<thead>
<tr>
<th></th>
<th>Intracaval injection</th>
<th>Intraportal injection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albumin per ml of homogenate</td>
<td>1.257 mg</td>
<td>1.058 mg</td>
</tr>
<tr>
<td>Specific radioactivity of purified albumin</td>
<td>7470 dpm/mg</td>
<td>11350 dpm/mg</td>
</tr>
<tr>
<td>Radioactivity in albumin per ml homogenate</td>
<td>9.39·10³ dpm</td>
<td>12·10³ dpm</td>
</tr>
<tr>
<td>Radioactivity in total protein per ml homogenate</td>
<td>268·10³ dpm</td>
<td>429·10³ dpm</td>
</tr>
<tr>
<td>Radioactivity in albumin in total protein</td>
<td>0.035</td>
<td>0.028</td>
</tr>
</tbody>
</table>
