AUTORADIOGRAPHIC LOCALIZATION OF 13N
AFTER FIXATION OF 13N-LABELED NITROGEN GAS
BY A HETEROCYST-FORMING BLUE-GREEN ALGA

C. PETER WOLK, SAM M. AUSTIN, JOHN BORTINS,
and AARON GALONSKY

From the MSU/AEC Plant Research Laboratory, and the Cyclotron Laboratory and the
Department of Physics, Michigan State University, East Lansing, Michigan 48824. Mr. Bortins' present address is the School of Physics and Astronomy, Tate Laboratory, University of Minnesota, Minneapolis, Minnesota 55414.

ABSTRACT
13N, generated by proton bombardment of 13C powder, is rapidly and easily converted to 13N-N_2, 0.01 atm pressure, ca. 10 mCi/ml, by automated Dumas combustion. 13N fixed (as 13N-N_2) by algal filaments was localized by an autoradiographic technique which permits track autoradiography with isotopes having short half-lives. Our findings show directly that a minimum of about 25% of the N_2 fixation by intact, aerobically grown filaments of Anabaena cylindrica is carried out by the heterocysts. If all of the N_2 fixation takes place in the heterocysts, then the movement of nitrogen along the filaments can be characterized by a constant $\tau < \text{ca. 5 s (cell}^{-2})$.

INTRODUCTION
The site of fixation of molecular nitrogen by aerobi-
cally-grown heterocyst-forming blue-green algae has been a matter of controversy. The results of a variety of indirect experiments (Fay et al., 1968; Gorkom and Donze, 1971; Fringsheim, 1968; Stewart et al., 1969; Stewart and Lex, 1970; Weare and Benemann, 1973) have been interpreted as indicating that all of the nitrogen fixation takes place in the heterocysts. However, other observations have suggested that heterocysts are not important for nitrogen fixation: Anabaena flos-aquat was observed to fix nitrogen actively despite a paucity of heterocysts (Kurz and LaRue, 1971); suspensions of Anabaena cylindrica with vegetative cells detached from heterocysts developed nitrogenase activity in less time than was required—in a separate experiment—for new heterocysts to form (Ohmori and Hattori, 1971); and at least one genus in which heterocysts have not been found fixes nitrogen under aerobic conditions (Rippka et al., 1971; Wyatt and Silvey, 1969), although most such genera do not (Kenyon et al., 1972; Stanier et al., 1971). Heterocysts have been isolated from filaments which had assimilated 15N-labeled N_2 for 5 min. The concentration of 15N in the heterocysts was no higher than in intact filaments (Ohmori and Hattori, 1971), but 15N might have been solubilized from the heterocysts during their isolation. Localization without disruption would be preferable.

Wolk and Wojciuch (1971a) have shown that heterocysts from sonically disrupted filaments of A. cylindrica have the capacity to account for 25% of the acetylene-reducing (and therefore, presumably, nitrogen-fixing: see Dalton and Mortenson, 1972) activity of intact filaments. We have let algal
filaments assimilate nitrogen gas labeled with radioactive nitrogen (\(^{13}\text{N}\): 1.20 MeV maximum \(\beta^+\) energy, \(t_{1/2} = 10\) min), and by track autoradiography have localized the nitrogen fixed. Attainment of track frequencies much greater than background was achieved by batch-processing of \(^{13}\text{N}\) from bombarded targets of \(^{14}\text{C}\), and by the development of appropriate autoradiographic techniques. The results obtained demonstrate directly that relative to vegetative cells, heterocysts in intact filaments have a high activity for reducing \(\text{N}_2\), the physiologically important substrate of nitrogenase.

MATERIALS AND METHODS

Anabaena cylindrica Lemm. was grown aerobically in fermentors as described previously (Wolk and Wojciuch, 1971 b). Where noted, the medium was supplemented with 2 mM NH\(_4\)Cl and 4 mM buffer (sodium n-tris(hydroxymethyl)-methyl-2-amino-ethane sulfonate, pH 7.2 (Sigma Chemical Co., St. Louis, Mo.)), or with 5 mM KNO\(_3\), 5 mM NaNO\(_3\) and 2.5 mM Ca(NO\(_3\))\(_2\). These supplements had little effect on the growth rate. The nitrogenase activity of cultures grown with and without fixed nitrogen was measured by the acetylene reduction technique (Dalton and Mortenson, 1972; Wolk and Wojciuch, 1971 a). The alga was concentrated from 1.3-2.6 to 26 \(\mu\)g chlorophyll per ml growth medium by centrifugation at 1000 \(g\) for 1-2 min, and was kept in the light under an atmosphere of 19.9\% \(\text{O}_2-0.1\% \text{CO}_2-80\% \text{Ar}\) until used, usually within less than 0.5 h. Despite the absence of nitrogen, the acetylene-reducing activity of such suspensions did not increase before use.

Nitrogen-13 was generated by proton bombardment of \(^{12}\text{C}\), i.e., by the nuclear reaction \(^{12}\text{C}(p,n)^{13}\text{N}\). Beams of 11-MeV protons from the Michigan State University cyclotron ranged from 0.6 to 4.0 \(\mu\)A, and bombardments lasted about 30 min. The targets were 16.6 mg (in early experiments, 20 mg) of amorphous \(^{13}\text{C}\) (60 and 90 atom \% from Prochem, 97 atom \% from Monsanto Research Corp., Mound Laboratory, Miamisburg, Oh.), arranged so that the beam left the target after losing 6 MeV of energy. The target cell (Austin, Bortins, Galonsky, and Wolk, unpublished construction) was designed to permit rapid remote transfer of the \(^{13}\text{C}\) target to the combustion tube used for further processing, and to permit the proton beam to penetrate through the target for focussing and for measurement of current. In addition, the cell could be positioned in and removed from the beam by means of a pneumatic tube. The \(^{13}\text{N}\) was recovered from the targets by a slight modification of the technique used by Barsdate and Dugdale (1965) for \(^{15}\text{N}\). The target was thoroughly mixed with fine CuO powder and, together with 0.18 mg KNO\(_3\) to provide carrier nitrogen, was subjected to automated Dumas combustion (800°C; rear oven 580°C) using a Coleman Nitrogen Analyzer, model 29 (Coleman Instrument Div., Perkin Elmer Corp., Maywood, Ill.) with all ovens adjusted to setting no. 5. The combustion products were passed through an extra 13 cm of CuO and 20 cm of Cu at 500°C, carrier CO\(_2\) and minor products of the combustion were removed with a liquid nitrogen trap, and a Toeppler mercury pump was used to compress the \(\text{N}_2\) into 1-ml evacuated vials. The process from the end of bombardment to exposure of algae took ca. 16 min.

The 1-ml vials—which had received ca. 0.01 atmospheric ml of \(^{13}\text{N}\)-labeled \(\text{N}_2\) (\(^{13}\text{N}-\text{N}_2\) were filled to 1 atm with a gas mixture (Matheson Scientific Div., Will Ross, Inc., East Rutherford, N. J.), usually 1\% \(\text{CO}_2-99\% \text{Ar}\). In tests of the inhibition of \(^{13}\text{N}\) fixation by carbon monoxide, one of a pair of vials received 10 \(\mu\)l of CO. When inhibition by \(\text{H}_2\) was tested, one of two vials was filled with 1\% \(\text{CO}_2-99\% \text{H}_2\). The competitive inhibition of fixation of \(^{13}\text{N}-\text{N}_2\) by nonradioactive nitrogen was measured by filling one vial with 0.1\% \(\text{CO}_2-99.9\% \text{Ar}\), and a second vial with 0.1\% \(\text{CO}_2-19.9\% \text{Ar}-80\% \text{N}_2\). Vials then received 0.25 ml of algal suspension, and were incubated in the light (400 foot candles incandescent illumination) for 2 or 15 min, during which time they were stirred with magnets. The radioactive gas was then evacuated and replaced with 1\% \(\text{CO}_2-99\% \text{Ar}\). In some experiments, the algae were then autoradiographed. Sometimes, the gas phase was replaced with 1\% \(\text{CO}_2-99\% \text{N}_2\), and incubation was continued in the light for 15 min more before autoradiography. During the illumination, the temperature of the vials stayed close to 23°C.

Because of the low ratio (see below) of disintegrations to cells, disintegrations were recorded as individual tracks, so as to be rendered visible in the presence of a background of randomly distributed silver grains. To record tracks, a relatively thick layer of emulsion is required. Because \(^{13}\text{N}\) has a half-life of only 10 min, the layers of emulsion had to be prepared in advance. Microscope slides (1 inch \(\times\) 3 inches) were coated with 1.5 cc of Ilford G-5 emulsion (Ilford Ltd., Essex, England) which had been melted at 50°C, and the emulsion was then gelled at 6°C. After drying for 8-20 h at 23°C in the presence of anhydrous calcium chloride, the emulsions were hypersensitized by treatment with triethanolamine for 20 min (Barkas, 1963), so as to decrease the grain spacing in positron tracks. Hypersensitization and all subsequent steps were performed in complete darkness. The pellicle of hypersensitized emulsion was dried for 24 h in the presence of anhydrous calcium chloride at 6°C before use. The layer of emulsion was then about 50 \(\mu\)m thick.
For autoradiography, the algal suspension was diluted 10-fold, and a portion of 10 or 25 µl was injected through a serum stopper onto an emulsion-coated microscope slide. The opaque slide-holder was shaken to spread the algal filaments over the emulsion surface and was then evacuated. Within 20 s, the added liquid had evaporated. Three consequences of evacuation to dryness were: diffusion of nitrogen was stopped; the algal filaments became affixed to the emulsion surface strongly enough that most were not dislodged during development of the emulsion; and sensitivity of the emulsion, which is greatly decreased when the emulsion is moist, was maintained at a high level. The slides of emulsion were developed after an exposure of 2-12 h.

For development, slides were soaked in Bristol developer (Barkas, 1963), ca. 50 ml per slide, for 10 min at 6°C, and then an equal volume of 23°C developer was added. The solution was permitted to warm toward 23°C for 50 min; development was stopped with 0.2% acetic acid (10 min); and fixation was performed with Barkas’ (1963) fixer for 2 h at 6°C. Pellicles were then washed for 1 day with distilled water, which was changed once. Developed slides were stored at 4°C, 100% relative humidity, wet toward 23°C for 50 min; development was stopped with 0.2% acetic acid (10 min); and fixation was calculated from the relationship v = \(\frac{v_{\text{max}}}{(K_m + p)} \). The partial pressure (p) of nitrogen in the fixation vials was set by the amount of carrier nitrogen added to the combustion tube. The maximal rate (v_{\text{max}}) of fixation of nitrogen was determined approximately from the aerobic growth rate of the alga (about one doubling per day) and the amount of algal nitrogen per vial. Finally, the rate (v) of fixation of all nitrogen was determined by measuring the rate of fixation of \(^{13}\text{N}\) by the alga with a scintillation counter and clock and by multiplying this rate by the ratio of \(N_2 \) per vial to \(^{13}\text{N}-N_2 \) per vial (determined with an ionization meter).

The products of combustion of \(^{14}\text{NO}_3\) and \(^{15}\text{NO}_3\) were measured with a GD 150 mass spectrometer (Varian/MAT, Bremen, Germany) equipped with an HTE/DE-150 inlet system. Peak heights corresponding to \(N_2 \) and NO were corrected for differences in electron impact ionization cross sections (Kieffer and Dunn, 1966).

RESULTS

The nuclear reaction \(^{12}\text{C}(p, n)\) \(^{13}\text{N}\) has a high yield of \(^{13}\text{N}/\mu\text{A} \) relative to alternative nuclear reactions which generate \(^{13}\text{N}\) (Austin, Bortins, Galonsky, and Wolk, unpublished calculations). Only six radioactive byproducts with half-lives greater than 1 s are possible. Formation of these isotopes (\(^3\text{H}, ^{7}\text{Be}, ^{10}\text{Be}, ^{10}\text{C}, ^{11}\text{C}, \) and \(^{14}\text{O}\)) from \(^{12}\text{C}\) or \(^{14}\text{C}\) is, however, not energetically possible at a bombarding energy of \(\leq 15 \) MeV. Absence of significant quantities of radioactive byproducts in our experiments was confirmed by the observations that the earliest measured half-life of the target was 10 min (Fig. 1, A), and that the \(^{13}\text{N}-N_2 \) produced decayed to background with a half-life of 10 min (Fig. 1, C: mean half-life 10.03 ± 0.16 min). Radioactivity fixed into the algal suspension (Fig. 1, B) and into algae filtered from suspension also exhibited a 10-min half-life. Thus, observed tracks (other than background) from algal cells resulted from decay of \(^{13}\text{N}\).

Algal fixation of \(^{13}\text{N}\) was sharply reduced by carbon monoxide, by hydrogen, by excess stable \(N_2 \), and by prior growth of the alga in the presence of fixed nitrogen (Table I).

As little as 2-4% of the \(^{13}\text{N}\) generated remained...
FIGURE 1 Decay curves after generation of 13N by the reaction 13C(p,n)13N. (A) Decay curve of the target material after bombardment of 20 mg of 60 atom % 13C with a 0.82 µA beam of protons. (B) A similar target was bombarded with 2 µA of protons, the purified 13N-N$_2$ compressed into a single vial, N$_2$ assimilated by an algal suspension (0.25 ml, 26.8 µg chlorophyll/ml), and the radioactivity in 10% of the volume of the suspension measured after removal of 13N-N$_2$. (C) A 16.6-mg target of 90 atom % 13C was irradiated with a 4 µA current of protons. Of the 13N generated, 6.3% (corrected for decay) was compressed into a vial, and the radioactivity in the vial measured (each count is a 10-min average).

in the combustion tube of the Nitrogen Analyzer, and ca. 13% was detected in the liquid nitrogen trap (percentages corrected for decay time). The 14N-N$_2$ obtained was compressed into 1-ml vials at a concentration of up to 22 mCi per vial, and normally 3-10 mCi per vial.

Plentiful radioactivity was fixed into algal cells to permit autoradiographic determination of the sites of the 13N atoms incorporated (Fig. 2). The track densities observed were much higher than background. 13N was not released from emulsion by evacuation (Table II), but a maximum of 13% (see Discussion) of the tracks expected were found and traceable to a cell of origin. The resolution of the site of origin of tracks which could be traced to the filament was ±0.2±0.5 µm (Figs. 3, 4).

Table I

| Condition | Observed | Expected for 13N
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth on NH$_4^+$</td>
<td>1.1</td>
<td><0.5§</td>
</tr>
<tr>
<td>Growth on NO$_3^-$</td>
<td>21 (19)</td>
<td>39§</td>
</tr>
<tr>
<td>Fixation in the presence of 0.013 atm CO</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Fixation in the presence of a high partial pressure of H$_2$</td>
<td>~13</td>
<td>low</td>
</tr>
<tr>
<td>Fixation in the presence of a high partial pressure of N$_2$</td>
<td>11</td>
<td>8§</td>
</tr>
</tbody>
</table>

TABLE I

Conditions Decreasing Algal Assimilation of 13N

Fixation of 13N by algae grown aerobically with N$_2$ as nitrogen source, and incubated for 2 min with 14N-N$_2$, CO$_2$ and Ar (see Materials and Methods), was compared with fixation by equivalent algae in the presence of CO, excess N$_2$, or H$_2$, or with fixation by algae grown with sources of fixed nitrogen. Counts per minute (corrected to a standard time) per millicurie 13N per milliliter gas phase, and ratios thereof, were computed for Millipore-filtered, washed samples of algae or for portions of algal suspensions.

* Corresponds to incorporation into alga.

‡ Additional incorporation into supernate. The nitrate-grown alga must excrete much of the 13N it fixes.

§ Ratio of acetylene reduction by the same concentrated algal suspensions used for 13N assays.

¶ See text.

Assumes K_m(N$_2$) = 0.076 atm.

The value of K_m(N$_2$) obtained for nitrogen fixation was 0.076 ± 0.016 atm (mean of eight determinations). These values of the K_m are in agreement with the range of values published for the blue-green alga *Nostoc muscorum* (Burris and Wilson, 1946) and for other organisms (Parejko and Wilson, 1971). The values of K_m were not corrected for two factors: incorporation of 14N not due to 13N-N$_2$ (see below), and release of 13N from the filaments after fixation. These factors would have had opposite, small effects on the computation.

Table III shows the frequency distributions of tracks originating n cells from the nearest conjoined heterocyst and of cells located n cells from the nearest conjoined heterocyst both (A, B) 3 min after a 2-min exposure to 13N-N$_2$, and (C) ca. 18 min after that exposure, with an intervening 15-
FIGURE 2 Positron tracks resulting from decay of \(^{15}\)N atoms incorporated by algal filaments during 15 min of fixation of \(^{15}\)N-N\(_2\). The tracks are concentrated in the vicinity of the algal filaments, the ends of which are indicated with arrows. \(\times\) 270.

min chase with stable N\(_2\). In Table III B and C, cells in terminal sequences of vegetative cells, such as at the right-hand end of the filament in Fig. 4, were excluded because these might have become detached from a heterocyst after incubation with \(^{15}\)N-N\(_2\). At the earlier time point, heterocysts (ca. 7% of total cells) had 22.6 ± 1.4% of the total \(^{15}\)N in filaments. During the 15-min period of “chasing” with 1% CO\(_2\)-99% N\(_2\) in the light, the fraction of the total \(^{15}\)N found in the heterocysts decreased to 13.3 ± 2.1%. With the same batch of algae 4.5 ± 0.5 min after a 2-min exposure to \(^{15}\)N, heterocysts had 22.1 ± 1.7% (3 slides, 722 tracks total) of the \(^{15}\)N. In the determinations of the ratio of tracks originating at heterocysts to total tracks, all cells were included, and track frequencies were corrected for background.

3 min after a 2-min pulse of \(^{15}\)N-N\(_2\), 79 ± 4% of the \(^{15}\)N was extractable from Millipore-filtered algae with 80% methanol.

Portions from an algal suspension were incubated in 1-ml vials for 2 min under 1% CO\(_2\)-balance Ar in the presence and absence of \(^{15}\)N-N\(_2\). The gas phases were then evacuated, replaced with 1% CO\(_2\)-balance Ar, and 10% C\(_2\)H\(_2\) added. Ethylene production in the two vials during 20 min was equal, within the experimental error of the C\(_2\)H\(_2\) reduction technique.

In certain experiments, unlabeled filaments were processed for autoradiography, in parallel with
TABLE II

<table>
<thead>
<tr>
<th>Effect of Evacuation on 13N Content of Sample Applied to Emulsion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filtered alga</td>
</tr>
<tr>
<td>Total suspension</td>
</tr>
<tr>
<td>Evacuated emulsion</td>
</tr>
</tbody>
</table>

Portions of an algal suspension were processed in four ways. One portion was filtered onto a 0.45-µm pore size Millipore filter, washed, the filter added directly to a scintillation vial containing Cocktail D, and counted. A second portion was filtered and washed like the first, the filter was glued to a planchet, and counted. A third portion was added directly to Cocktail D, a filter was added, and the vial was counted. A fourth portion was applied to emulsion in the dark, and evacuated until dry. The portion of emulsion with a surface layer of algae was excised from its microscope slide, glued to a planchet, and counted. Each sample was counted at least twice, and all counts were corrected to a standard time.

* An independent determination of the relative counting efficiency of planchet counter and scintillation counter using 32P-labeled algae gave a figure of 39.7%.

DISCUSSION

Generation and Purity of 13N-N_2

An average cell of *A. cylindrica* (mass 1.6×10^{-11} g [Dunn and Wolk, 1970], 11% N) contains 7.7×10^{10} atoms of nitrogen. When growing at a rate of one doubling per day (0.8 atm N_2), the average cell incorporates 3.7×10^{7} atoms of nitrogen/min. If 13N-N_2 is present at 3.2×10^{-10} ml gas (with a radioactivity of 1 mCi), if N_2 is present at 0.013 atm, and if $K_m(N_2) = 0.076$ atm, 13N will be fixed at a rate of 0.29 13N/cell/min. Exposure of algae to 2π sr of emulsion 3 min after a 2-min pulse can, therefore, result in a maximum of about 0.24 tracks/cell per mCi 13N/ml.

In practice, the production by β-rays (from 13N and 32P) of recordable tracks was maximally about 13% of the number expected for 2π geometry. The efficiency of track production was low for several reasons. The origin of some tracks could not be determined with certainty. For example, tracks for which the displacement of the first grain away from a filament exceeded one cell radius, as a consequence of very high β-ray energy or nearly horizontal trajectory, were excluded. Some tracks were obscured by insensitive regions in the emulsion, by locally high background grain density, or—if the tracks lay beneath the alga—by optical distortion. It is clear that tracks were not reduced in number due to volatilization of 13N, because evacuated emulsion retained 100% of the radioactivity (corrected for decay time) applied to it (see Table II). Because of the inefficiency of production of traceable tracks, a maximum of ca. 0.03 tracks could be recorded/cell per mCi 13N/ml. Background levels, maximally 2×10^{-4} tracks/µm2, or 5×10^{-3} tracks/cell, accounted normally for on the order of 10% of the tracks observed. We know that the physical process of autoradiographing algal filaments did not generate tracks, because the number of tracks traceable to unlabeled algae was consistent with the number expected on the basis of the observed density of background tracks.

Before our work, 13N-N_2 had been produced in a continuous stream from a gas-swept target. The nuclear reaction 12C(d, n)13N, with a 40-µA deuterion current, produced 13N-N_2 continuously at 0.03–0.06 mCi/ml (Nicholas et al., 1961; see also Carangal and Varner, 1959, and Campbell et al., 1967), a concentration which would have resulted in a track level little above background. To increase the concentration of 13N, we generated 13N-N_2 by a batch process, and used a more efficient nuclear reaction.

We chose the 14C(p, n)15N reaction because of its high yield, the ready availability of proton beams, and the disadvantages inherent in other

Wolk, Austin, Bortins, and Galonsky Autoradiographic Localization of 13N
FIGURE 3 Sequence of photomicrographs depicting positron tracks derived from decay of atoms of 15N, and illustrating the resolution of their sites of origin. After a 2-min pulse of 15N-N$_2$, 15N in vegetative cells was not found to be concentrated near heterocysts. The line drawing is a tracing of the filament as seen in a, with heterocysts (H) and tracks localized with a microscope. Although all tracks indicated are clearly identified with a microscope, not all are shown equally clearly by the series of optical sections. X 570.
TABLE III

Frequency Distributions of the Origins of Tracks and of the Position of Cells

<table>
<thead>
<tr>
<th>Position of cell*</th>
<th>(A) 2-min pulse + 3-min delay</th>
<th>(B) The same as A</th>
<th>(C) The same 2-min pulse as A, B + 15-min chase with stable N₂ + 2- and 3.5-min delay\dagger</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tracks observed</td>
<td>Cells examined</td>
<td>Tracks/Cell</td>
</tr>
<tr>
<td>H</td>
<td>205</td>
<td>1,668</td>
<td>0.118</td>
</tr>
<tr>
<td>n = 1</td>
<td>126</td>
<td>2,821</td>
<td>0.040</td>
</tr>
<tr>
<td>2</td>
<td>131</td>
<td>2,754</td>
<td>0.043</td>
</tr>
<tr>
<td>3</td>
<td>119</td>
<td>2,675</td>
<td>0.040</td>
</tr>
<tr>
<td>4</td>
<td>76</td>
<td>2,545</td>
<td>0.025</td>
</tr>
<tr>
<td>5</td>
<td>70</td>
<td>2,234</td>
<td>0.027</td>
</tr>
<tr>
<td>6</td>
<td>74</td>
<td>1,884</td>
<td>0.035</td>
</tr>
<tr>
<td>7</td>
<td>45</td>
<td>1,489</td>
<td>0.026</td>
</tr>
<tr>
<td>8</td>
<td>31</td>
<td>1,142</td>
<td>0.023</td>
</tr>
<tr>
<td>9</td>
<td>19</td>
<td>842</td>
<td>0.018</td>
</tr>
<tr>
<td>10</td>
<td>16</td>
<td>610</td>
<td>0.022</td>
</tr>
<tr>
<td>11</td>
<td>14</td>
<td>475</td>
<td>0.025</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td>360</td>
<td>0.025</td>
</tr>
<tr>
<td>13</td>
<td>10</td>
<td>286</td>
<td>0.026</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>205</td>
<td>0.021</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>135</td>
<td>0.006</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>96</td>
<td>0.002</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>69</td>
<td>0.000</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>55</td>
<td>0.000</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>33</td>
<td>0.000</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>18</td>
<td>0.000</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>12</td>
<td>0.000</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>8</td>
<td>0.000</td>
</tr>
<tr>
<td>23</td>
<td>0</td>
<td>7</td>
<td>0.000</td>
</tr>
<tr>
<td>24</td>
<td>0</td>
<td>4</td>
<td>0.000</td>
</tr>
<tr>
<td>>24</td>
<td>0</td>
<td>0</td>
<td>0.000</td>
</tr>
</tbody>
</table>

* H = heterocyst, n = 1 is a vegetative cell adjacent to a heterocyst, n = 2 is a vegetative cell one cell removed from a heterocyst, etc. x = cells in sequences lacking heterocysts.

† Combined data from two slides of same algal suspension.

§ Corrected for background = 0.0046 ± 0.0003 tracks per cell.

∥ Not here tallied: cells and tracks of indeterminate position relative to a heterocyst before autoradiography.

¶ Corrected for background = 0.0037 ± 0.0002 tracks per cell.

Nuclear reactions. Thus (a) the ^12C(p, γ)^15N reaction (Carangal and Varner, 1959) has a low yield (Austin, Bortins, Galonsky, and Wolk, unpublished calculation). (b) The biological usefulness of the ^14N + p → ^15N reactions (Campbell et al., 1967) is greatly reduced because the resulting ^14N₂, if present at a partial pressure approaching or greater than the Kₜ for fixation, competitively inhibits fixation of ^15N₂. (c) ^15NO would be expected to be a major contaminant present in ^15N₂ generated by the reaction ^16O(p, α)^15N, at least with certain oxygen-containing target materials, for the following reason: ^15N generated by bombardment of an oxygen-rich target material, Li₂CO₃, is present largely as oxides, whereas this is not the case for ^15N generated from a carbon target (Süe, 1949). So to estimate the extent to which labeled nitrogen present in combination with oxygen in a target would remain in combination with oxygen as a contaminant in purified N₂ derived from the target, we combusted K^15NO₃ with the Nitrogen Analyzer. Ca. 0.015% of the gas produced had the mass of ^15N₁⁶O (bp, -152°C). This percent was of the same order of magnitude.
FIGURE 4 Sequence of photomicrographs depicting positron tracks. 4 min after a 2-min pulse of 13N-N_2, heterocysts still have nearly 25% of the 13N in algal filaments. Vegetative cells more than halfway to the end of a filament from the nearest conjoined heterocyst, and tracks from such vegetative cells (e.g., at the right-hand end of the filament drawn in ink), were not included in Table III, B and C, because a heterocyst might have become detached from the end of the filament after fixation and movement of 13N.

See also the commentary in the legend of Fig. 3. \times 244. Line drawing, \times 388.

as the percent of available N$_3$ fixed by the algae in our experiments. Because a liquid nitrogen trap (-196°C) was present in the nitrogen purification train, all other oxides of nitrogen (mp, $>-103^\circ$C), and cyanides (mp, $>-35^\circ$C), were absent or were present at much lower concentrations. No product with mass 31 was detected when K14NO$_3$ was combusted.

With any target, measurable amounts of 13N-labeled contaminants can form after purification of 13N-N_2. Thus, at 10 mCi/ml, 0.01 atm N$_2$, there are 3.2×10^{11} 15N14N and 2.7×10^{17} N$_2$ present/ml, so that at least 3.8×10^5 12N$_2$/ml would be expected. Since random pairing of nitrogen atoms is not always obtained with the Coleman Nitrogen Analyzer (Desaty et al., 1969), 3.8×10^5
represents a lower limit. During the 3 min between purification and the end of fixation, 34% of the 13N2 molecules decompose as a consequence of radioactive decay. Many of the resulting free 13N atoms would be expected to react with the gas and liquid in the reaction vials, thereby forming products (e.g. oxides) not removable by evacuation, and which might be assimilated by the algae. To reduce the percentage of the total “fixation” of 13N attributable to molecular species other than N2, the algae were concentrated 10- to 20-fold before being exposed to 13N, and O2 was omitted from the experimental vials. Because of the short duration of our experiments (< 20 min), nitrogenase activity would not have been diminished by 0.2 atm O2 (Wolk, 1970), as was confirmed by a preliminary experiment with 13N2.

In order to ascertain whether fixation of 13N was largely as 13N-N2, boiled (Campbell et al., 1967; Nicholas et al., 1961; Ruben et al., 1940) and cyanide-treated organisms (Nicholas et al., 1961) and genera lacking nitrogenase (Campbell et al., 1967) were used as controls in previous reports. However, incorporation of a particular contaminant may require active growth or the presence of an enzyme system possibly missing from a different organism.

We have used several different means to test what fraction of the 13N fixed is fixed as 13N-N2: (a) Growth of the alga in the presence of ammonium ion and nitrate ion. Nitrogenase activity is thereby reduced, more extensively by NH4+ than by NO3-. Nitrate reductase activity is also reduced by growth on NH4+, but is enhanced by growth on NO3- (Hattori, 1962). Comparable reduction of 13N assimilation and of nitrogenase activity (Table I) is consistent with essentially all, but not quite all, 13N being incorporated as N2. In particular, no significant incorporation of 13N as NO (Fewson and Nicholas, 1960)—e.g., after oxidation and reaction with water to form NO3-, or by reaction with nitrogenase—seems possible. (b) Inhibition by carbon monoxide. In long-term experiments, a concentration of 0.003 atm carbon monoxide inhibited nitrogen fixation by N. muscorum 95-98%, while 0.02 atm did not inhibit the uptake of combined nitrogen (Burris and Wilson, 1946). We found that reduction of C2H2 (0.05 atm, 20 min) was inhibited 95% by 0.013 atm CO. Our observation that fixation of 13N was only slightly less inhibited than was C2H2 reduction by CO in short-term experiments (Table I) was again consistent with essentially all 13N assimilated being fixed as N2. Hydrogen, an inhibitor of reduction of N2—but not of C2H2—also sharply reduced assimilation of 13N. The range of inhibition predictable on the basis of published studies (Burris and Wilson, 1946) is broad, and brackets the observed values. (c) Inhibition of 13N uptake by excess stable N2. If two vials were to contain N2 at partial pressures p1 (low) and p2 (high), and if a contaminant were fixed in both vials at a rate equal to a fraction f of the rate of fixation of 13N-N2 in the vial with a low pressure of N2, the ratio of the rates of 13N fixation in the two vials would be

\[
\frac{1 + f}{K_m + p_1 + f}.
\]

It may be calculated from Table I that f = 3-4%. However, because of the uncertainty in the value of \(K_m(N_2)\) and because the apparent value of f would be increased by any slight leakage of stable N2 into the reaction vials, we consider that the results of this type of experiment were consistent with essentially all 13N being incorporated as N2. The concurrence of the results of the different methods of estimation indicates that a negligible percentage (1-3%) of the 13N fixed was fixed in a form other than N2.

Movement of Nitrogen out of Heterocysts and along a Filament

Exposure to high levels of radioactivity might conceivably have impaired the N2 fixation system differentially in the two types of cells. This possibility was shown not to have affected our experiments, because C2H2 reduction by an algal suspension was unaltered by prior incubation of the suspension with 13N-N2. The fact that 13N was present at a much higher concentration in heterocysts than in vegetative cells (Table III A, B) thus demonstrates directly that heterocysts are special sites of nitrogen fixation in intact filaments.

The heterocyst, because it is a nongrowing cell, cannot continually fix nitrogen at a greater rate than its neighbors and retain the nitrogen it fixes. Intercellular transfer of nitrogen via the medium seems highly unlikely because it would entail the risk, under natural conditions, of interception by other organisms. If the 13N were secreted, the consequent extensive dilution would make it very difficult to reassimilate 90% (Table II) of the labeled nitrogen in the few minutes before autoradiography. Furthermore, the lipid layer which
surrounds the cell wall and protoplast of the heterocyst, except at the junction(s) with vegetative cells, probably constrains nitrogenous substances released from heterocysts to move directly into neighboring cells, rather than into the medium (Winkenbach et al., 1972).

To analyze the movement of nitrogen along a filament between heterocysts, we make the following simplifying assumptions: (a) 15N present in small molecules, and at a concentration $C(x,t)$ ($t =$ time, $x =$ distance measured in units of cells), moves with a flux proportional to its concentration gradient. If this were the only assumption, C would obey the diffusion equation $\frac{\partial C}{\partial t} = \frac{1}{2\tau}(\frac{\partial^2 C}{\partial x^2})$, but only approximately, because filaments are not homogeneous. Here, τ is the time ($= t/x^2$) during which, if 15N moves from a point, the mean square distance of movement increases by unity. (b) The small, 15N-labeled molecules undergo biochemical reactions at a rate kC, proportional to C. This assumption modifies the equation governing the concentration C to the form $\frac{\partial C}{\partial t} = \frac{1}{2\tau}(\frac{\partial^2 C}{\partial x^2}) - kC$. The result of these reactions is that 15N is immobilized in macromolecules, at a concentration $C'(x,t)$. That is, $\frac{\partial C'}{\partial t} = kC$.

The distribution of 15N after fixation of a pulse of label may therefore be calculated as the sum, $C + C'$, of the solutions of the last two equations. The ratio diffusible-15N/total-15N is equal, by definition, to the ratio $\int C'dx/\int (C + C')dx$.

1 If at $t = 0$, all 15N were concentrated at $x = 0$, these equations would have the solutions

$$C(x,t) = \frac{x^2}{\sqrt{2\pi\tau}} e^{-x^2/2\tau}$$

and

$$C'(x,t) = \sqrt{\frac{\tau}{2\pi}}\left(-x\right) e^{-x^2/2\tau}$$

$$\left[0.5 + \phi(\sqrt{2\tau} - |x| / \sqrt{\tau/2}) - e^{-|x|^2/2\tau}
ight]$$

where $\phi(u) = \int_{-\infty}^{\infty} e^{-v^2/2} dv$. Modification of the equations governing C and C' so as to take into account the radioactive decay of 15N leads to no change in the relative spatial distribution of 15N predicted by these equations.

and it is easily shown—by integration from $x = -\infty$ to $x = \infty$ of the equations governing C and C'—that the latter ratio is equal to $e^{-k\tau}$. These equalities permit experimental determination of the value of k. The fraction of 15N present in easily diffusible compounds was estimated as the fraction of 15N extractable from Millipore-filtered algae with 80% methanol. We thereby determined that, averaged over a 2-min pulse and a 3-min delay, $k \simeq 8 \times 10^{-4} s^{-1}$.

During exponential growth, the rate of increase, dN/dt, of total cell nitrogen (N) is equal to $k'N$, where k'—the algal growth constant—is $\simeq 8 \times 10^{-4} s^{-1}$. There is evidence that k' is approximately independent of position (Mitchison and Wilcox, 1972). Almost all cellular nitrogen is present in the form of substances of high molecular weight. For that reason, and in analogy with the integrated equation $\frac{\partial}{\partial t} \int C'dx = \int k' C dx$, dN/dt is also at $e^{-k\tau}$, at least to a first approximation, where N_p is precursor-pool nitrogen. Thus, $k'N \simeq AN_p$. The ratio $N/N_p \simeq 400$ (Dharmawardene et al., 1972, and W. D. P. Stewart, personal communication). Because k is therefore $\simeq 32 \times 10^{-4} s^{-1}$ during exponential growth, the experimentally determined "immobilization of 15N" can be approximately accounted for in terms of growth of vegetative cells during the labeling period. Concordantly, much of the 15N in heterocysts 3 min after the labeling period could be "chased" out by incubation of filaments with stable N$_2$ (Table III B, C). The half-time for movement of 15N out of heterocysts at that time was much greater than 1.5 min.

Because N_p was fixed at a low partial pressure in our 15N experiments, in the absence of a chase there may have been little tendency for 15N to move out of heterocysts. Thus, it is possible that the actual fraction of total nitrogen fixation accounted for by heterocysts was only slightly greater than the 23% of total tracks observed to originate from heterocysts (cf. also Wolk and Wojciuch, 1971a). If there is more 15N per cell in vegetative cells close to heterocysts than in those farther away (Table III, A), the differential could be due to movement of nitrogen from heterocysts, or to stimulation by heterocysts of nitrogen fixation in nearby cells (cf. Wolk, 1970; Winkenbach and Wolk, 1973).

The occurrence of nitrogenase activity in vegetative cells would be consistent with the observation that only about half of the nitrogenase assayable in
vitro appears to be associated with heterocysts as determined by sonic rupture of vegetative cells (Wolk and Wojciuch, 1971b), whereas about 78% of the activity of glucose-6-phosphate dehydrogenase in filaments appears to be associated with heterocysts according to a similar type of experiment (Winkenbach and Wolk, 1973).

The sum $C + C'$ (corrected for background) was calculated for values of $x = 1, 2, 3, \ldots, 13$, for the 240-s period between the midpoint of the pulse and the initiation of autoradiography, and for various values of r, using either the measured value of k or the value $k = 0$, and assuming that 13N appearing in a cell is derived from heterocysts to both sides of that cell and spaced 25 cells apart (Fig. 5). The approximate probability of generating observed track frequencies by background-corrected, expected frequencies was determined as the product of probabilities calculated with the χ^2 distribution where both frequencies were > 5; and by the Poisson distribution for the infrequent tracks distant from heterocysts, in order to accord those tracks their full biological import, rather than group them so as to use the χ^2 distribution. If $r > 5$ s, the relative probability that a calculated distribution could generate the observed track distribution (Table III B) was very low ($< 5 \times 10^{-4} \approx 7.6 \times 10^{-7}/1.7 \times 10^{-4}$) compared with the probability that the observed distribution of 13N in vegetative cells was generated by fixation by vegetative cells. The relative probability was approximately 0.25 if $r = 3$ s. Thus, if all fixation of N_2 is by heterocysts, the value of r is less than about 5 s.

Unfortunately, the true value of r is unknown. However, r can be estimated on the basis of experiments of Gorkom and Donze (1971; and M. Donze, unpublished).

![Figure 5](image_url)

Figure 5 Distribution of relative number of tracks per cell as a function of distance (in number, n, of cells) from a heterocyst. The mean number expected on the basis that all vegetative cells fix N_2 at the same rate, and account for 77.4% of the fixation by filaments, is taken as standard (relative number = 1) (●). Other curves: tracks observed (○; data from Table III, B); and mean number expected, calculated on the basis that all N_2 fixation takes place in the heterocysts, and that 77.4% of the amount of nitrogen fixed at $t = 0$ diffuses along filaments for 240 s, with $(k = 8 \times 10^{-4} s^{-1})$ or without $(k = 0)$ simultaneous immobilization into macromolecules, according to equations presented in the text. $k = 0 s^{-1}$, $\tau = 6$ s (△). $k = 8 \times 10^{-4} s^{-1}$ and $\tau = 3$ s (□), 5 s (△), 10 s (●), and 60 s (■).
personal communication). These authors found that nitrogen-starved filaments of *A. cylindrica* appeared to lose their biliprotein pigments. Filaments subsequently exposed to N₂ gas under aerobic conditions for 14 h showed gradients of reformed biliproteins, from a normal level adjacent to heterocysts, to none or a trace midway between heterocysts. Heterocysts accounted for 1 cell in 14, so that the gradients had a root mean square length less than 3.3 cells. It may be shown—again by integration of the equations governing *C* and *C'*. Dr. Ta-hsien Wei was initially associated with this project.

This work was supported by the United States Atomic Energy Commission under Contract AT(ll-1)-1338 and by the National Science Foundation. John Bortins was a National Science Foundation Undergraduate Research Participation awardee.

Received for publication 25 June, and in revised form 23 October 1973.

REFERENCES

