Functional Angiotensin II Receptors in Cultured Vascular Smooth Muscle Cells

STEPHEN GUNTHER, R. WAYNE ALEXANDER, WILLIAM J. ATKINSON, and MICHAEL A. GIMBRONE, Jr.
Departments of Pathology and Medicine, Harvard Medical School and the Brigham and Women's Hospital, Boston, Massachusetts 02115

ABSTRACT To study cellular mechanisms influencing vascular reactivity, vascular smooth muscle cells (VSMC) were obtained by enzymatic dissociation of the rat mesenteric artery, a highly reactive, resistance-type blood vessel, and established in primary culture. Cellular binding sites for the vasoconstrictor hormone angiotensin II (All) were identified and characterized using the radioligand 125I-angiotensin II. Freshly isolated VSMC, and VSMC maintained in primary culture for up to 3 wk, exhibited rapid, saturable, and specific 125I-All binding similar to that seen with homogenates of the intact rat mesenteric artery. In 7-d primary cultures, Scatchard analysis indicated a single class of high-affinity binding sites with an equilibrium dissociation constant (Kd) of 2.8 ± 0.2 nM and a total binding capacity of 81.5 ± 5.0 fmol/mg protein (equivalent to 4.5 x 10⁴ sites per cell). Angiotensin analogues and antagonists inhibited 125I-All binding to cultured VSMC in a potency series similar to that observed for the vascular All receptor in vivo. Nanomolar concentrations of native All elicited a rapid, reversible, contractile response, in a variable proportion of cells, that was inhibited by pretreatment with the competitive antagonist Sar1,lleB-All. Transmission electron microscopy showed an apparent loss of thick (12-18 nm Diam) myofilaments and increased synthetic activity, but these manifestations of phenotypic modulation were not correlated with loss of 125I-All binding sites or hormonal responsiveness. Primary cultures of enzymatically dissociated rat mesenteric artery VSMC thus may provide a useful in vitro system to study cellular mechanisms involved in receptor activation-response coupling, receptor regulation, and the maintenance of differentiation in vascular smooth muscle.

The interaction of vasoactive hormones, such as the octapeptide, angiotensin II (All), with vascular smooth muscle cells (VSMC) has important implications for normal vascular physiology (1) and the pathophysiology of hypertension (2). Although pharmacologic studies in whole animals, isolated vascular strips, and blood vessel homogenates have identified receptors for a number of vasoactive substances, the cellular localization of these receptors, biochemical correlates of their activation, and factors regulating their expression have not been well defined, in part due to the structural complexity of vascular tissues. Selective isolation and culture of the cellular components of blood vessels provides a potentially useful approach to this problem (3–12).

Large fibroelastic arteries, such as the aorta, have been a preferred source of VSMC for culture (3, 7, 8) because the inner one-third of the medial layer of these vessels normally does not contain other cell types. However, once established in vitro, these cells often undergo a modulation of phenotype that is characterized by the loss of myosin-containing, thick (12-18 nm Diam) filaments, decreased content of immunoreactive myosin, increased proliferative and biosynthetic activity, and decreased contractile responsiveness to vasoactive hormones (reviewed in reference 10). In general, the tendency for cultured VSMC to undergo such changes has limited their usefulness for in vitro studies of vasoactive hormone action (10, 12).

In this report, we describe biochemical, ultrastructural, and functional characteristics of VSMC cultured from the rat mesenteric artery, a highly reactive resistance-type blood vessel. We document the retention of specific high affinity All binding sites in cells that have proliferated in response to serum growth factors and have undergone certain morphological changes consistent with phenotypic modulation (10). Furthermore, at least a portion of these cellular binding sites appear to be
functional receptors, as evidenced by the stimulation of reversible contraction with physiological concentrations of AII. This in vitro model system may be especially useful for studying the cellular mechanisms of AII action in vascular smooth muscle, as well as for identifying factors required for the maintenance of functional differentiation in this cell type.

MATERIALS AND METHODS

Isolation and Primary Culture of Rat Mesenteric Artery Smooth Muscle Cells

VSMCs were harvested from enzymatically dissociated rat mesenteric arteries by modifications of the method described by Ives et al. (8) for rabbit aorta. All procedures were carried out under aseptic conditions. Male C-D strain Sprague-Dawley rats (Charles River Breeding Labs, Wilmington, MA), weighing 250-250 grams, which had been maintained on standard Purina laboratory chow and tap water ad lib., were sacrificed by cervical dislocation. The superior mesenteric artery with its major branches was excised, en bloc, from its origin at the aorta to the mesenteric border of the intestine, and placed in a petri dish containing ice-cold Hank's Balanced Salt Solution (HBSS, Ca++, Mg++-free; M. A. Bioproducts, Walkersville, MD) with 0.2 mM added Ca++. Fat, adventitia, and venous structures were removed by blunt dissection, and the cleaned mesenteric artery arcades (usually two per preparation) were transferred into a 50-ml plastic tissue culture flask (Costar Data Packaging, Cambridge, MA), containing 4.0 ml of Enzyme Dispersion Mixture: HBSS (Ca++, Mg++-free) solution with 0.2 mM added Ca++, 15 mM HBES buffer (pH 7.2-7.3), 0.125 mg/ml elastase (Pancreatin) and penicillin-streptomycin. The cell suspension was centrifuged at 1000 x g for 10 min at 4°C, and washed twice in ice-cold HBSS. The final cell pellet was resuspended in 1 ml of DMEM with 10% calf serum and the additives removed by the 100-µm nylon mesh, were plated as explants in plastic culture dishes containing the rat mesenteric artery arcade before dissociation, or undigested tissue fragments (cell yield, and a plating efficiency consistently >50%).

Tetka, Inc., Elmsford, NY) to separate dispersed cells from undigested vessel wall fragments and debris. The filtered suspension was centrifuged at 1000 x g for 10 min at 4°C, and the cell pellet resuspended in 10-15 ml of Dulbecco's Modified Eagle Medium (DMEM), supplemented with 10% (vol/vol) fetal bovine serum (FBS) (Gibco, Grand Island, NY), 1% of 105/cm2. Recent modifications of the method described by Ives et al. (8) for rabbit aorta. All procedures were carried out under aseptic conditions. Male C-D strain Sprague-Dawley rats (Charles River Breeding Labs, Wilmington, MA), weighing 225-250 grams, were killed by cervical dislocation and the superior mesenteric artery was excised and washed in HBSS to remove nonadherent cells and debris. The mesenteric artery arcades were then digested with collagenase (500 U/ml) and DNase (250 U/ml) in HBSS at 37°C for 30 min, and washed twice in cold HBSS. The final cell pellet was resuspended in 1 ml of DMEM with 10% calf serum and the additives removed by the 100-µm nylon mesh, were plated as explants in plastic culture dishes containing the rat mesenteric artery arcade before dissociation, or undigested tissue fragments (cell yield, and a plating efficiency consistently >50%).

For comparative studies, adventitious tissues that routinely were stripped from the rat mesenteric artery arcade before dissociation, or undigested tissue fragments removed by the 100-µm nylon mesh, were plated as explants in plastic culture dishes and their cellular outgrowths cultured. Bovine smooth muscle cells were cultured from explants of the inner one-third of the medial layer of calf thoracic aorta, using standard techniques (3). Smooth muscle cells were isolated from several cell layers by the enzymatic dissociation procedure described above. The isolated cells were grown in DMEM with 10% calf serum and the additives indicated above.

25I-AII Binding Assay

Moniodinated 25I-AII (specific activity 900-1500 Ci/mmol) was obtained from New England Nuclear (Boston, MA). Radiochemical purity, verified by thin-layer chromatography, was >98%. The lyophilized ligand was redisolved in 50 mM phosphate buffer, pH 7.4, and stored in aliquots at -20°C for up to 3 wk. Aliquots were used only once after thawing. The 1-7 heptapeptide and 3-8 hexapeptide analogues of AII were gifts of Drs. E. Haber and J. Burton; all other peptides were obtained from Peninsula Laboratories, Inc. (San Carlos, CA). The angiotensin-I-converting enzyme inhibitor, SQ-14,225 (2-mercaptopropionyl-glycine) was a gift of Dr. Z. P. Horovitz. All other chemicals were from Sigma Chemical Co.

For binding assays, 6- to 8-day-old primary cultures derived from 2-6 rat mesenteric arteries were harvested and pooled (1-3-6 x 10⁶ cells, final yields) as follows. Each culture flask was washed three times with HBSS at 37°C, and incubated on ice with 2 ml of 0.2% EDTA in isotonic saline for 5 min. The cells were then gently detached with a rubber policeman, centrifuged at 200g for 3 min at 4°C, and washed twice in ice-cold Assay Buffer (50 mM Tris, 100 mM NaCl, 5 mM MgCl₂, pH 7.2 at 22°C). The final cell pellet was resuspended in Assay Buffer (4°C) at a concentration of 2 x 10⁶ cells/ml and assayed immediately. Cell viability after this procedure was 85-90% by trypan blue exclusion; nonenzymatic harvesting was found to be essential for preservation of specific 25I-AII binding sites. Protein concentrations were determined on sonicated cell suspensions by the method of Lowry et al. (14). The DNA contents of dissected mesenteric artery preparations, freshly isolated cells, and cells harvested from 7-d primary cultures were determined on formalin-treated homogenates, following the method of Henegar (15).

Binding assays were performed by incubating 50 µl of cell suspension (10⁶ cells) with 50 µl of Assay Buffer containing 0.25% bovine serum albumin (BSA) and 0.05 M NaCl. After 1 h incubation at 22°C, the cell suspension was filtered through a Whatman GF/C filter (pH 7.4; BSA) and bound and free radioactivity were separated by rapid filtration through a Whatman GF/C filter (pH 7.4; BSA). The assay tubes and filter wells were washed three times with additional 3 M-ports of ice-cold saline. The filters were dried in room air and the trapped radioactivity was counted in an automated gamma counter (Nuclear Chicago Radiographics, Inc., Des Plaines, IL) with an efficiency of 70%. Specific binding was defined as: (total binding) minus (binding in the presence of 1 µM unlabeled AII). Filter blanks, determined from identical incubations without cells, averaged 0.4 ± 0.06% (mean ± SD) of total counts initially present.

Degradation of 25I-AII during the binding assays was assayed by thin-layer chromatography. Cell suspensions (2 x 10⁶ cells/ml) were incubated with 25I-AII (1 µM) at 22°C for 30 min. After centrifugation, the acid eluate (neutralized with 1 M NaOH) was co-chromatographed, along with the original supernatant (incubation medium) and authentic 25I-AII, on thin-layer cellulose plates (Eastman 6065), and developed with tert-butyl alcohol:3% NH₃(105:35) as solvent. Degradated chromatograms were cut into 0.25-cm strips and counted for radioactivity.

Electron Microscopy

Freshly isolated mesenteric artery cell pellets, and cells cultured for intervals of 1 to 10 wk in plastic petri dishes or flasks, were fixed with 4.0% glutaraldehyde:0.1 M cacodylate buffer containing 0.5% CaCl₂ (pH 7.4) at 4°C, postfixed in 2% OsO₄, stained with uranyl acetate or tannic acid en bloc, dehydrated, and embedded for transmission electron microscopy as previously described (5). Thin Epon sections, cut parallel or perpendicular to the plane of the cell layer, were stained with uranyl acetate and lead citrate, and examined in a Philips EM201 electron microscope. Several cells from different cultures were examined at each time interval studied.

Evaluation of Cellular Contraction

The responsiveness of individual cultured cells to vasoactive substances was evaluated with a Nikon compound phase-contrast microscope with a photographic attachment. For this purpose, cells grown on 25-mm Diam #2 glass cover slips were superinfused, in modified Rose chambers, with oxygenated (95% O₂:5% CO₂) Krebs-Ringer bicarbonate buffer, pH 7.4, containing 2 mM CaCl₂, or Minimum Essential Medium (Eagle. Suspension formula; M. A. Bioproducts) with 5 mM CaCl₂, at a rate of 0.25 ml/min. The microscope stage, chamber, and perfusion medium were maintained at 37°C with heated air. Sequential photomicrographs were taken at 15-s to 1-min intervals, at 100-400 times magnification, before, during, and after infusion of vasoactive agonists and antagonists. A positive contractile response was judged by the following criteria: rapid onset of cell shortening after addition of agonist, reversibility upon washout of agonist, and/or inhibition by appropriate pharmacologic antagonist.

The Journal of Cell Biology, Volume 92, 1982

on April 20, 2017 Downloaded from
RESULTS

Isolation and Primary Culture of Vascular Smooth Muscle Cells

Enzymatic dissociation of dissected rat mesenteric arteries yielded a population of viable cells highly enriched in smooth muscle. Examination of the final cell pellet by electron microscopy (Fig. 1) showed elongated and ovoid cells that exhibited various structural features characteristic of smooth muscle (16). The cytoplasm of the majority of intact cells was filled with bundles of myofilaments, interspersed with fusiform condensations or dense bodies, while other organelles such as mito-

![Figure 1](image-url)

Figure 1 Electron micrograph of a section through a cell pellet obtained by enzymatic dissociation of rat mesenteric artery. Portions of several smooth muscle cells are seen. x 11,800. bar, 1 μm. (a) Row of plasmalemmal vesicles (intracellular caveolae) at cell surface x 40,000. bar, 0.1 μm (b) Myofilament bundles, visible in longitudinal and cross-section, contain prominent thick (12-18 nm) filaments surrounded by thin (5-8 nm) filaments x 37,500. bar, 0.1 μm.
chondria, rough endoplasmic reticulum and Golgi complexes were located near the nuclear poles. Longitudinal rows of plasmalemmal vesicles were visible along the cell surface (Fig. 1, inset a), but a distinct basal lamina was absent, presumably having been removed by the enzymatic dissociation procedure. At higher magnification (Fig. 1, inset b), myofilament bundles were seen to consist of arrays of thick (12–18 nm Diam) myosin-containing filaments, which were surrounded by numerous thin (5–8 nm Diam), actin and tropomyosin-containing filaments (10, 16).

Several hours after plating, any erythrocytes, cellular debris, and amorphous connective tissue fragments present in the resuspended cell pellet were readily rinsed from the culture dish. By 48–72 h, attached cells were well spread on the plastic substratum and had assumed an elongated shape (Fig. 2 a). Mitotic activity usually was first noted at 56–60 h, and by 3–4 d extensive proliferation was occurring (apparent population doubling time, 24–36 h). After 7–8 d, most cultures had reached confluence, whereupon a topographical pattern of parallel alignment with areas of overlapping was apparent (Fig. 2 b). Cell size appeared increased by phase-contrast microscopy, and the protein: DNA ratio in 7-d primary cultures (133 µg protein/µg DNA) was 2.5-fold greater than in freshly dissociated cells (53 µg protein/µg DNA). Postconfluent primary cultures that were left undisturbed for periods up to 8–10 weeks developed nodular protrusions, similar to those described previously in human vascular smooth muscle cultures (5). Although small islands of polygonal cells (Fig. 2 c) occasionally were noted early in sparse primary cultures, these contaminants (presumably endothelial cells) did not proliferate. Dense outgrowths of fibroblast-like cells (Fig. 2 d) were obtained from the tissue residue removed by sieving on 100-µm nylon mesh; however, similar spindle-shaped cells were not detectable in primary smooth muscle cell cultures at any stage.

Ultrastructural Changes in Primary Smooth Muscle Cultures

Smooth muscle cells underwent extensive ultrastructural changes in primary culture. Within 24 h, there was a marked decrease in organized myofilament bundles, and thick (12–18 nm Diam) filaments were no longer apparent. In particular, the absence of thick filaments at 24 h was documented in several individual smooth muscle cells that had been observed

![Figure 2](https://example.com/figure2.png)

FIGURE 2 Phase-contrast photomicrographs of enzymatically dissociated rat mesenteric artery cells in primary culture x 350; bar, 30 µm. (a) Primary culture of smooth-muscle-rich final cell pellet at 3 d. Most cells are elongated and contain an ovoid nucleus with 1–3 nucleoli and perinuclear collections of phase-dense granules. (b) Confluent primary culture at 7 d shows parallel alignment of cells with developing hillock (arrows) of intertwined, overlapping cells, a growth pattern characteristic of vascular smooth muscle cultures. Cell size and cytoplasmic/nuclear ratio appear increased compared with freshly isolated and 3-d cultured cells. (c) Island of small polygonal cells (presumably endothelium) in a sparse primary culture at 3 d. These focal contaminants failed to proliferate in culture. (d) Outgrowth of spindle-shaped fibroblast-like cells from explant of undigested tissue residue trapped on 100-µm nylon mesh (see Materials and Methods). Such cells were not observed in primary smooth muscle cultures.
to undergo a contractile response (see below) upon superfusion with All. By 72 h (Fig. 3 a), most cells contained autophagic vacuoles, abundant free ribosomes and polysomes, but only isolated bundles of thin (5–8 nm Diam) and intermediate (100 nm Diam) filaments. As cultures grew to confluent densities (days 6–8), increasing numbers of thin filaments became organized in longitudinal fashion; however, thick filaments not observed. In postconfluent primary cultures, examine intervals from 2 to 10 wk, accumulation of fibrillar and amorphous extracellular matrix components was evident, and cytoplasm of most cells was filled with broad bundles longitudinally organized filaments (Fig. 4 a). At higher m

Figure 3 Electron micrographs of rat mesenteric artery smooth muscle cells in primary culture. Cells were fixed in situ and sections taken parallel to the surface of the culture dish. Bars, 1 μm. (a) Cells in 3-d subconfluent culture. Note loss of myofilament bundles. X 5500. (b) Portions of 2 cells in 8-d confluent culture. Myofilaments have reorganized in longitudinal bundles (MF), and polysomes and rough endoplasmic reticulum (RER) are present. X 7300.
FIGURE 4 Electron micrographs of rat mesenteric artery smooth muscle cultures. Bars, 1 μm. (a) Section through peripheral area of smooth muscle cell in eight-week-old primary culture. Note fibrillar and amorphous extracellular matrix (ECM), rows of plasmalemmal vesicles (PV), and longitudinal bundles of myofilaments (MF). x 21,500. (b) Detail of myofilaments in smooth muscle cell in postconfluent primary culture. Bundles of thin (5-8 nm) filaments are interspersed with fusiform dense bodies; no thick (12-18 nm) filaments are seen. x 43,000.

nification (Fig. 4b), these myofilament bundles were seen to consist predominantly of 5- to 8-nm filaments, interspersed with electron-dense fusiform condensations; no 12- to 18-nm Diam filaments were observed in numerous cells examined at each time point.

Binding of 125I-All to Cultured Vascular Smooth Muscle Cells

Freshly isolated rat mesenteric artery smooth muscle cells and cells maintained in primary culture for 4 to 20 d exhibited
specific \(^{125}\text{I}\)-AII binding (Table I, Fig. 5). In 7-day-old primary cultures, cellular binding of \(^{125}\text{I}\)-AII was saturable at nanomolar concentrations of ligand (Fig. 5). Specific binding was \(>98\%\) of total binding. Scatchard analysis (inset, Fig. 5) indicated a single class of high-affinity binding sites, with an apparent equilibrium dissociation constant \((K_d)\) of 2.8 \(\pm\) 0.2 (SD) nM, and a total binding capacity of 81.5 \(\pm\) 5.0 fmol/mg protein. This binding capacity in 7-d cultures corresponded to a receptor density of \(\approx 45,000\) sites per cell. Although \(^{125}\text{I}\)-AII binding in cultured cells was increased (\(>\text{twofold}\)) as compared with freshly isolated cells, the number of binding sites per cell appeared to remain relatively constant from 4 to 20 d (Table I).

Binding of \(^{125}\text{I}\)-AII in 7-d-old primary cultures was rapid, with a half-time for association at 22°C of 2.5 min (Fig. 6). After the addition of a large excess of unlabeled AII, an initial rapid dissociation of bound \(^{125}\text{I}\)-AII was followed by a slower phase of dissociation, which reached \(\approx 55\%\) of the original value at 30 min. This result is not entirely attributable to endocytosis of hormone, as \(>85\%\) of specifically bound \(^{125}\text{I}\)-AII (after 40-min incubation at 22°C) is releasable from the cell surface by brief proteolytic treatment (228 U/ml TPCK-trypsin, Worthington Biochemical Corp., 5 min, 37°C, pH 7.2). Fitting of the early phase kinetic data depicted in Fig. 6 to the second order and pseudofirst order rate equations yielded values for the association and dissociation rate constants of 3.8 \(\times\) \(10^4\) M\(^{-1}\) sec\(^{-1}\) and 9.8 \(\times\) \(10^{-4}\) sec\(^{-1}\), respectively. The \(K_d\) calculated from these rate constants \((k_{-1}/k_1)\) was 2.6 nM, in good agreement with that obtained from steady-state Scatchard analysis.

The specificity of the binding sites for AII compared with its analogues and antagonists is illustrated in Fig. 7. The AII antagonists \((\text{Sar}_4\text{Ile}_8)\)- and \((\text{Sar}_4\text{Ala}_8)\)-AII were equipotent with the native hormone in competing for binding, while \((\text{desAsp}_1)\)-AII (AIII) was only \(\approx 15\%\) as potent. The relative potency of AI (the immediate metabolic precursor of AII in vivo) was unchanged when incubations were performed in the presence of 10 \(\mu\)M concentrations of the AI converting enzyme inhibitor, SQ-14,225 (data not shown), indicating the lack of significant conversion of AI to AII under these assay conditions. The inactive metabolites of AII, 1–7 heptapeptide and 3–8 hexapeptide, were essentially without effect in competing for binding.

Thin-layer chromatographic analysis of radioactivity remaining free in the assay medium, after 30-min incubation at 22°C with cultured smooth muscle cells, showed considerable degradation of \(^{125}\text{I}\)-AII (Fig. 8a). However, \(>75\%\) of the radioactivity remaining bound to the cells and subsequently eluted co-chromatographed with authentic \(^{125}\text{I}\)-AII (Fig. 8b).

For purposes of comparison, smooth muscle cells were cultured, in parallel, from the medial layer of calf thoracic aorta using a standard explant outgrowth method (3) and the enzymatic dissociation procedure described in this report. High-affinity \(^{125}\text{I}\)-AII binding was rarely detectable in aortic explant outgrowth cells. In contrast, \(^{125}\text{I}\)-AII binding consistently was present in primary cultures of VSMC enzymatically isolated from bovine aorta; however, the amount of binding observed with these cells usually was less (on a per cell basis) than that seen with rat mesenteric artery cells. Fibroblast like cultures, obtained from the adventitial stripings of rat mesenteric arteries (see Materials and Methods), also showed \(<20\%\) of the specific \(^{125}\text{I}\)-AII binding obtained with 7-d primary cultures of...
All were blocked by pretreatment with the specific antagonist often elicited a second contraction. Contractile responses to
min. When hormone-free buffer was reperfused, relaxation
that began within 30-45 s and reached a maximum after 1-5
dose, 0.3 nM) induced a progressive shortening in cell length
in these fibroblast-like cultures.

rat mesenteric VSMC. Some smooth muscle cells, presumably
from small side branches of the mesenteric artery, were present
in these fibroblast-like cultures.

Hormone-induced Cell Contraction

Enzymatically dissociated rat mesenteric artery VSMC in
primary culture responded to All with a reversible contractile
response (Fig. 9). Nanomolar concentrations of All (threshold
dose, 0.3 nM) induced a progressive shortening in cell length
that began within 30-45 s and reached a maximum after 1-5
min. When hormone-free buffer was reperfused, relaxation
began within 3-5 min; subsequent challenge with hormone
often elicited a second contraction. Contractile responses to
All were blocked by pretreatment with the specific antagonist
(Sar1, Ile8)-All (1 μM). The cells also contracted reversibly
when exposed to 10^{-8} to 10^{-6} M concentrations of epinephrine,
and this response was blocked by the alpha-adrenergic antag-
onist phentolamine (0.1 mM).

The percentage of contractile cells varied among individual
primary cultures and at different times in the same culture.
Responsiveness typically was maximal (=30%) during the first
3 d in culture but was greatly reduced during the subsequent
period of cell proliferation. Hormone-induced contractility
again was evident after confluence (7-9 d), although, due to
cell-cell overlap, the actual percentage of contracting cells was
not readily discernible. Some primary cultures remained hor-
monally responsive after being maintained at postconfluent
densities for as long as two months. Spontaneous (i.e., not
stimulus-induced) contractions were not observed in primary
rat mesenteric artery VSMC cultures.

DISCUSSION

The purpose of these studies was to develop an in vitro system
to study the interaction of vasoactive hormones, such as All,
with target cells in muscular, resistance-type arteries. The
enzymatic dissociation procedure described in this report yields
viable smooth muscle cells that proliferate in primary culture,
yet retain various biochemical and functional properties rele-
vant to the study of vasoactive hormone action.

The 125I-All binding sites identified in cultured rat mesen-
teric artery VSMC are essentially similar to those of the All
receptors present in particulate fractions prepared from the
same blood vessel in vivo (13). The affinity of these cellular
binding sites (K_d, 2.8 nM by Scatchard analysis; 2.6 nM by
kINETIC analysis) is sufficiently high to permit interaction with
All at concentrations present in rat blood under various phys-
iological conditions (17). This high affinity contrasts with the
considerably lower affinities (K_d, 13-55 nM) reported for All
binding sites in the aorta (18-20). Association and dissociation
rate constants estimated from kinetic analysis of 125I-All bind-
ing (Fig. 6) are consistent with the time-course of All action in
intact blood vessels. Scatchard analysis (Fig. 5, inset) indicates
that the radioligand is interacting with a single class of high
affinity sites without cooperativity, that is, according to the law
of simple mass action. Pharmacologic studies have shown a
similar mechanism for the interaction of All with its receptors
in blood vessels (21). The specificity of cellular binding sites
for All and its analogues (Fig. 7) is identical to that observed
for vascular All receptors in vivo and in isolated preparations
of blood vessels (20, 22, 23). Moreover, the ability of cultured
cells to contract in response to All (Fig. 9), in the concentration
range at which radioligand binding was observed, indicates
that at least a portion of these binding sites are functional
receptors.

Specific 125I-All binding was increased twofold in cells that
had been cultured for 4 to 20 d, as compared with freshly
isolated cells (Table I). This conceivably could reflect regen-
eration of receptor sites destroyed during the enzymatic disso-
ciation procedure, as suggested by Ives et al. (8), or, alterna-
tively, may be related to the cellular hypertrophy (increased
cell size and presumably cell membrane surface area) observed
in the cultured cells (Fig. 2a, b; Table I, legend). It is noteworthy
that once cells were established in primary culture, the
number of All binding sites per cell remained relatively con-
stant (Table I). Studies in progress in our laboratory, however,
indicate that the expression of All receptors in cultured VSMC
is not a static process, and may be subject to hormonal regu-
adenylate cyclase system (31). Thus, various biochemical mech-
(30) and have a catecholamine- and prostaglandin-stimulated
inhibited by dibutyryl cyclic-AMP and the calmodulin inhibi-
rylation of a 20,000-dalton protein that exhibits properties of
posure of these cells to All stimulates (Kd = 0.2 nM) phospho-
immunoprecipitation andgel electrophoresis; furthermore, ex-
recently reported (29), myosin heavy-chain protein also is
muscle myosin (D. Larson, K. Fujiwara, R. W. Alexander, M.
pattern when stained with antibodies directed against smooth
VSMC do exhibit a specific immunofluorescent cytoskeletal
study extends this approach to a highly reactive, muscular
artery that is more representative of the peripheral resistance
growth-stimulatory factors implicated in the pathogenesis of
morphological and biosynthetic similarities noted between aortic explant cells in culture and the prolifer-
ating “modified smooth muscle cells” present in atherosclerotic
lesions (35, 36) have provided a rationale for this experimental
approach. However, the consistent failure of explanted large
VSMC to show agonist-induced contraction has ham-
pered their use in studies of the interactions of vasoactive
hormones with smooth muscle cells (10). As seen in this study,
high-affinity 125I-AII binding sites were not consistently de-
tectable in explant outgrowth cultures of bovine aortic media
VSMC but were present in enzyme-dissociated primary cell
 Cultures prepared from the same tissue. It appears that the
explant techniques may select for a population of cells capable of
migrating and proliferating but contributing little to vascular
tone, or, alternatively, results in the dedifferentiation of cells
with loss of specific hormone receptors. The usefulness of
enzymatic dissociation for isolating hormonally responsive
VSMC recently has been demonstrated by other investigators,
working with various large arteries and veins (7, 8). The current
study extends this approach to a highly reactive, muscular
artery that is more representative of the peripheral resistance
vasculature.

Finally, the demonstration of functional angiotensin recep-
tors in cultured VSMC, which have undergone proliferation and
marked morphological changes, implies that the transition from “contractile” to “phenotypically modulated” state (10)
may involve several discrete processes and need not be a global
phenomenon (37). The in vitro system described in this report
should lend itself to the study of the various factors (e.g.,
mechanical forces, cellular interactions, extracellular matrix
components, hormonal, and other trophic influences) necessary
for the maintenance of normal structure and function in the
vascular smooth muscle cell.

The authors thank Mary Ellen Dugan, Lesley Kuczera and Deborah
Sandstrom for expert assistance, Dr. Z. P. Horovitz (Squibb Institute

GUNTHER ET AL. Angiotensin Receptors in Cultured Vascular Smooth Muscle 297

Published February 1, 1982

Figure 9. Sequential phase-contrast photomicrographs of contractile response of isolated rat mesenteric artery smooth muscle
cell in primary culture. × 500. bar, 20 μm. (a) 15-min superfusion with control medium; (b) 1 min after infusion of 10 nM
angiotensin II; cell has shortened to 65% of original length; (c) 10-min washout with control medium; note partial relaxation to 86%
of original length; (d) 3 min after rechallenge with 10 nM angiotensin II; cell has shortened to 42% of original length.

lotion. Exposure to elevated levels of angiotensin II in vitro
induces time-dependent, reversible decreases in receptor num-
ber (down-regulation), that appear to reflect, in part, changes
in the kinetics of receptor turn-over (24). This cultured VSMC
system, isolated from neurogenic and systemic influences, pro-
vides the opportunity to directly correlate receptor status with
biochemical and contractile responsiveness, and thus should
facilitate the study of cellular mechanisms of angiotensin re-
ceptor regulation (25).

As seen by electron microscopy, the well organized myo-
filament bundles present in situ (not shown) and in enzymati-
cally isolated rat mesenteric artery smooth muscle cells (Fig. 1)
underwent extensive disruption within 24 h in culture. Thick
(12- to 18-nm Diam, presumably myosin-containing) fila-
ments were not detected in cultured cells examined at times ranging
from 24 h to 10 wk, although longitudinally oriented bundles
of thin (5- to 8-nm Diam, presumably actin-containing) fila-
ments were prominent in postconfluent cultures (Figs. 3 and
4). It is especially noteworthy that thick filaments were not
visualized using standard ultrastructural methods, even in cells
that were undergoing a hormone-induced contractile response.
Thus, the absence of thick filaments by electron microscopy
did not correlate, in the present study, with loss of specific
vasoactive hormone receptors (Table I) or hormone-induced
contractility (Fig. 9). Experimental difficulties in demonstrat-
 ing thick, myosin-containing filaments in vascular smooth
muscle cells often have been attributed to suboptimal prepa-
 ratory techniques or other methodological considerations (26-
28).

In contrast to the apparent absence of myosin-containing
filaments by electron microscopy, primary rat mesenteric artery
VSMC do exhibit a specific immunofluorescent cytoskeletal
pattern when stained with antibodies directed against smooth
muscle myosin (D. Larson, K. Fujitake, R. W. Alexander, M.
A. Gimbrone, Jr., unpublished observations). As we have
recently reported (29), myosin heavy-chain protein also is
detectable in 7- to 10-d confluent primary VSMC cultures by
immunoprecipitation and gel electrophoresis; furthermore, ex-
posure of these cells to AII stimulates (Kd ≈ 0.2 nM) phospho-
rylation of a 20,000-dalton protein that exhibits properties of
myosin light chain. This hormone-induced phosphorylation is
inhibited by dibutyl cyclic-AMP and the calmodulin inhibi-
tor chlorpromazine. In addition, we previously have observed
that these cultures produce prostaglandins in response to AII
(30) and have a catecholamine- and prostaglandin-stimulated
adenylate cyclase system (31). Thus, various biochemical mech-
anisms involved in vasoactive hormone receptor coupling ap-
pear to remain intact in these cultured VSMC, despite their
proliferation, cellular hypertrophy, and altered ultrastructural
appearance.

Phenotypically modulated VSMC, cultured from explants of
large blood vessels such as the aorta, have been used extensively
to study cell growth, extracellular matrix synthesis and lipid
metabolism (10). Such cultures have been especially useful for
characterization of platelet-derived (32) and other (33, 34)
growth-stimulatory factors implicated in the pathogenesis of
atherosclerosis. Morphological and biosynthetic similarities
noted between aortic explant cells in culture and the prolifer-
ating “modified smooth muscle cells” present in atherosclerotic
lesions (35, 36) have provided a rationale for this experimental
approach. However, the consistent failure of explanted large
VSMC to show agonist-induced contraction has ham-
pered their use in studies of the interactions of vasoactive
hormones with smooth muscle cells (10). As seen in this study,
high-affinity 125I-AII binding sites were not consistently de-
tectable in explant outgrowth cultures of bovine aortic media
VSMC but were present in enzyme-dissociated primary cell
cultures prepared from the same tissue. It appears that the
explant techniques may select for a population of cells capable of
migrating and proliferating but contributing little to vascular
tone, or, alternatively, results in the dedifferentiation of cells
with loss of specific hormone receptors. The usefulness of
enzymatic dissociation for isolating hormonally responsive
VSMC recently has been demonstrated by other investigators,
working with various large arteries and veins (7, 8). The current
study extends this approach to a highly reactive, muscular
artery that is more representative of the peripheral resistance
vasculature.
for Medical Research) for providing SQ-14,225, and Drs. E. Haber and J. Burton (Massachusetts General Hospital) for providing the 1–7 heptapeptide and 3–8 hexapeptide analogues of AII.

Dr. Gunther is a Clinician Scientist of the American Heart Association; Dr. Alexander, a recipient of a National Institutes of Health (NIH) Career Development Award; and Dr. Gimbrone, an Established Investigator of the American Heart Association. This research was supported by NIH grants HL20054 and HL22602, NIH Biomedical Research Support funds, and a grant from the Massachusetts Affiliate of the American Heart Association.

Received for publication 26 January 1981, and in revised form 10 August 1981.

REFERENCES