Changes in Plasma Membrane Glycoproteins of Rat Spermatozoa during Maturation in the Epididymis

COLIN R. BROWN, KAROLY I. VON GLOS, and ROY JONES

Agricultural Research Council, Institute of Animal Physiology, Animal Research Station, Cambridge CB3 0JQ, United Kingdom

ABSTRACT Glycoproteins on the plasma membrane of testicular and cauda epididymidal spermatozoa have been labeled with galactose oxidase/NaB[3H]4 and sodium metaperiodate/NaB[3H]4, followed by analysis on SDS polyacrylamide gels. The major glycoprotein labeling on testicular spermatozoa has a molecular weight 110,000 whereas on cauda epididymidal spermatozoa >90% of the radio-label is incorporated into proteins of molecular weight 32,000. These 32,000-mol wt proteins are homologous with proteins of similar molecular weight purified from the epididymal secretion and which have been shown previously to be synthesized in the caput epididymidis under hormonal control. Immunofluorescence revealed that the 32,000-mol wt proteins are present on the flagellum of mature but not immature spermatozoa and that they have a patchy distribution suggesting that they are mobile within the plane of the membrane. The membrane-bound 32,000-mol wt proteins possess hydrophobic domains as revealed by charge-shift electrophoresis and they also label with a lipophilic photoaffinity probe suggesting that they are in contact with the lipid bilayer. The evidence indicates that there is a considerable reorganization of the molecular structure of the plasma membrane of spermatozoa during maturation in the epididymis and that some of the changes are brought about by a direct interaction with epididymal secretory proteins.

The acquisition of motility and fertilizing capacity by mammalian spermatozoa as they pass through the epididymis is accompanied by a number of distinct, albeit in some cases subtle, changes in their morphology, composition, and metabolic activity (reviewed in references 2 and 42). That the epididymis plays a significant role in regulating sperm maturation is not in doubt, but relatively little is known about the processes mediating or controlling these changes, the sequence in which they take place, and their relative importance to the ultimate ability of the sperm to fertilize an egg. Recently, interest has focussed on maturation changes in the plasma membrane as the initial events during fertilization involve cellular recognition and membrane fusion. The concept that the plasma membrane of mature spermatozoa is a mosaic of heterogeneous protein and lipid domains has arisen from studies on the binding of lectins (31), distribution of antigens (1, 11, 15, 16, 25, 28, 30, 33), surface charge (21, 37, 50), and the arrangement of intramembrane particles (12, 29, 32). However, it is not altogether clear from these studies whether this heterogeneity is already expressed on spermatozoa in the testis or if it arises by modification of the plasma membrane during maturation in the epididymis.

As a preliminary step towards investigating the role of the epididymis in regulating sperm maturation we have examined the synthesis and secretion of proteins and glycoproteins in the rat epididymis (8, 26). Several androgen-dependent proteins and one testicular fluid-dependent protein were identified and characterized from the luminal secretions. In this communication we have extended these observations by comparing the nature of plasma membrane glycoproteins on testicular and cauda epididymidal spermatozoa. By inference, differences between the two types of spermatozoa must have developed at some stage in the epididymis and are likely to be related, either directly or indirectly, to the acquisition of fertilizing capacity. The results suggest that there is a significant reorganization of the molecular architecture of the sperm plasma membrane during maturation and that some of these changes are brought about by a direct interaction with epididymal secretory proteins.

MATERIALS AND METHODS

Materials: Adult male Wistar rats (300-350 g body weight) were used throughout these experiments. All chemicals and enzymes were of the highest purity available commercially and were purchased from BDH (Poole, Dorset,
concentration of metaperiodate was 5 mM and that 5-min incubation was
sufficient to oxidize the cell membrane to acrosomal membranes, suspended to 1 mg protein/ml in 10 mM-Tris/HCl pH 7.4, for electrophoresis on SDS polyacrylamide gels. Preliminary experiments showed that the optimal
concentration of radiolabel. The samples were incubated for 5 rain at 25°C and spermatozoa
were separated from enzyme and free label by washing through 3 ml of 0.3 M sucrose (~40 ~tl in 1 ml), and 1-2 ml of sperm suspension was layered over 3 ml
of (Kodak-Omat H) and quantified by densitometry.

For electrophoresis on nonenadinating Ornstein-Davis gels (9), proteins were first
challenged with epididymal cytosol or with the purified antigen. When a working
solution was absorbed by IgG, washed and resuspended to 1 mg protein/ml in 10 mM-Tris/HCl pH 7.4, and centrifuged at before. A time-course of the rate of protein solubilized in each detergent showed that a maximum was reached after 45 min. Protein
concentration was measured by the Lowry procedure (36) or by extinction at 280 nm. BSA was used as standard.

Electrophoresis and Detection of Labeled Proteins: One-
dimensional electrophoresis of proteins extracted from spermatozoa was per-
fomed under reducing conditions on 15% polyacrylamide gels containing 1% SDS and 3% glycerol (36). Protein bands were visualized by the silver stain (41) or Amido Black in an aqueous solution of 40% methanol and 7% acetic acid for
60 min at room temperature and destained overnight in the same solvent without dye. Approximate molecular weights were calculated from the mobility of proteins of known size. Relative amounts of protein were quantified by densitometry,
using an integrating densitometer (Helena Laboratories) to calculate peak areas. Labeled proteins were detected by fluorography (5) on preflashed film
(Kodak-Omat H) and quantified by densitometry.

For electrophoresis on nondenaturing Ornstein-Davis gels (9), proteins were first
dialyzed overnight against Tris/glycine buffer pH 8.4, freeze-dried, and
solubilized in 0.1 of the original volume of distilled water. Samples, containing
equal amounts of protein, were electrophoresed on 7% polyacrylamide slab gels,

Purification of 32,000-mol wt Proteins from Epididymal
Secretions: Two major acidic glycoproteins were purified from dilute CEP
by anion exchange chromatography on DEAE Sephadex A-25 at pH 7.9 (26). The
purified proteins were >95% homogeneous as judged by electrophoresis on SDS
polyacrylamide gels (26) and gave a positive reaction for carbohydrate when
stained by the periodic acid-Schiff procedure (51). When analyzed on nonden-
aturating polyacrylamide gels, a single diffuse-staining band with an average
molecular weight of 32,000 was obtained. A single peak, also corresponding to
~32,000, was obtained by gel filtration on Sephadex G-75 (26). We conclude
that our preparation consists of two proteins whose properties are very similar
and probably represents a case of microheterogeneity. They co-purify under all
cromatographic conditions used so far. Henceforth, we shall refer to them as the
32,000-mol wt proteins.

Production and Specificity of Antiserum: An antiserum to the
32,000-mol wt proteins was prepared in New Zealand White rabbits using a protocol
described (8). The antiserum was tissue specific and did not cross-react on
Ouchterlony double diffusion agar gels (43) with cytosols prepared from rat
testis, ventral prostate, seminal vesicles, coagulating glands, liver, or kidney.
Furthermore, it did not react against proteins in rat blood serum, testicular fluid,
or if the proteins were heated or reduced in the presence of the lipid bilayer of membranes.

Immunoprecipitation: Immunoprecipitation of labeled membrane proteins was carried out by the procedure of Kessler (27). Lymphoid and prem-
mune sera were decomplemented by heating at 56°C for 30 min and absorbed
three times at 4°C for 45 min each with an equal volume of a mixture of rat spleen, brain, and kidney cells in PBS pH 7.4. DOC extracts were made 150 mM NaCl, 1 mM EDTA, 10 mM Tris/HCl pH 7.4, 1% Nonidet P-40 (NP-40), 1 mg/ml BSA, and 200 μl incubated with 10 μl of immune or preimmune serum for 30 min at 25°C. Staphylococcus aureus cells (100 μl of 10% suspension), previously washed three times in NETN buffer (150 mM NaCl, 1 mM EDTA, 10 mM Tris/HCl pH 7.4, 1% NP-40), containing 1 mg/ml BSA, were added and incubated with shaking for 60 min at 4°C. Before incubation with antisera, DOC extracts were pretreated with 100 μl of Staphylococcus aureus cells for 60 min at 4°C. Cells were washed successively with NETN buffer supplemented to 0.5 M NaCl, NETN buffer + 0.1% SDS, and lastly with 10 mM Tris/HCl pH 7.4 + 0.1% NP-40. The final pellet was resuspended in electrophoresis buffer and boiled for 4 min. This procedure gave very low background with ~40% efficiency of precipitation.

Immunofluorescence: Indirect immunofluorescent tracing of the 32,000-mol wt proteins on testicular and cauda epididymidal spermatozoa was done on cells in suspension. Washed spermatozoa were resuspended in immune or preimmune serum diluted 1:32 in PBS/5% BSA and incubated for 30 min at 25°C. The spermatozoa were washed twice in PBS/5% BSA and incubated for a further 30 min at 25°C in FITC-conjugated goat anti-rabbit IgG. After two more washes in PBS/5% BSA, 5-μl aliquots of spermatozoa were mixed with 5 μl of 1:1 PBS/glycerol, mounted on clean glass slides, and viewed with a Zeiss epifluorescence microscope.

Immunoperoxidase: Detection of the 32,000-mol wt antigens on whole testicular and cauda epididymidal spermatozoa was carried out by the immunoperoxidase procedure as described by Lopo and Vacquier (35).

RESULTS

Comparison of Proteins in RTF and CEP

Since spermatozoa are exposed to a continuously changing milieu during their passage through the epididymis (25), we first compared the protein composition of RTF and CEP. When proteins in RTF and CEP were separated on nondenaturing polyacrylamide gels in the first dimension and denaturing polyacrylamide gels in the second dimension, different patterns were obtained after staining the gels with Coomassie Brilliant Blue (Fig. 1). The major protein in RTF was serum albumin which accounted for ~32% of the total protein. Only one pre-albumin protein, with a molecular weight of 23,000, was detected in RTF, and this accounted for 1.8% of the total protein. By contrast, five major pre-albumin proteins were present in CEP (Fig. 1). These had molecular weights of 18,500 (7.9%), 19,000 (8.1%), 23,000 (5.5%), and 32,000 (9.2%). Values given are approximate molecular weights.

Comparison of Membrane Glycoproteins on Testicular and Cauda Epididymidal Spermatozoa Labeled with Galactose Oxidase and NaB[3H]4

In the presence of galactose oxidase, the incorporation of NaB[3H]4 into protein was stimulated 6- to 10-fold above controls for cauda epididymidal spermatozoa but only 3- to 4-fold for testicular spermatozoa. Furthermore, testicular spermatozoa appear to contain more galactolipid as washing TCA-precipitated material collected on filters with 50 ml of 2:1 chloroform:methanol reduced the amount of NaB[3H]4 on testicular spermatozoa by 15-20% but only by 6-10% on cauda epididymidal spermatozoa.

Separation of labeled proteins extracted from testicular spermatozoa with DOC on SDS polyacrylamide gels followed by fluorography revealed one major labeled protein with a molecular weight of 110,000 (Fig. 2). This protein contained ~90% of the total radioactivity incorporated as determined by densitometry on preflashed film. Minor labeling was also detected on proteins with molecular weights of 42,000, 55,000, 64,000, and 78,000, and 180,000. Reextraction of sperm pellets with SDS revealed no additional labeled proteins. However, when DOC extracts of labeled proteins from cauda epididymidal spermatozoa were analyzed on SDS polyacrylamide gels, no labeling was detected in the region of 110,000 mol wt. Instead, >90% of the radioactivity was incorporated into proteins of ~32,000 mol wt with a small amount (~5%) in proteins with molecular weights of 13,500, 58,000, 84,000, and 150,000 (Fig. 2). Reextraction of the sperm pellets with SDS revealed additional labeling of a protein of 47,000 mol wt. It was also apparent from analysis of these SDS extracts that all of the labeled 32,000-mol wt proteins had not been removed in the first place by DOC. As mentioned previously, we consider this area of the gel to contain two acidic glycoproteins which migrate as a diffuse band and whose molecular weights differ by <1,000. We interpret our fluorographs to mean that DOC extracted all of the lower molecular weight protein but <100% of the higher molecular weight protein, the remainder of which was subsequently solubilized with SDS. Fluorographs of control spermatozoa (i.e. spermatozoa incubated with NaB[3H]4 alone) revealed no labeled proteins.

Preincubation of spermatozoa with neuraminidase followed by labeling with galactose oxidase/NaB[3H]4 stimulated incorporation of radiolabel by 7-10% for testicular spermatozoa but 15-20% for cauda epididymidal spermatozoa. However, analysis of detergent-extracted proteins on SDS polyacrylamide...
Comparison of Membrane Glycoproteins on Testicular and Cauda Epididymidal Spermatozoa Labeled with Sodium Metaperiodate and NaB[3H]4

Oxidation of sialic acid groups on membrane glycoproteins with sodium metaperiodate followed by reduction with NaB[3H]4 stimulated the incorporation of radiolabel into both types of spermatozoa. For testicular spermatozoa the degree of stimulation above controls was similar to that observed with galactose oxidase, but with cauda epididymidal spermatozoa it was only 22-25% of that found with galactose oxidase. Subsequent analysis of detergent extracts from labeled spermatozoa on SDS polyacrylamide gels revealed that the major labeled protein on testicular spermatozoa had a molecular weight of 110,000 with minor labeling of 68,000- and 180,000-mol wt proteins (Fig. 4). Cauda epididymidal spermatozoa on the

gels did not reveal labeling of any glycoproteins in addition to those listed above. Incubation of labeled spermatozoa with pronase or mixed exoglycosidases reduced labeling of the 110,000- and 32,000-mol wt proteins to <5% of controls. Endoglycosidase H had a similar effect indicating that both glycoproteins have carbohydrate chains N-glycosidically linked to asparagine residues. Digestion with trypsin also caused a reduction in the amount of label associated with the 32,000-mol wt proteins but with the concomitant appearance of a labeled protein with a molecular weight of 23,000-24,000 (Fig. 3). A time-course of the reaction showed that ~80% of the radiolabel associated with the 32,000-mol wt proteins was removed within 10 min and that longer incubation times (up to 5 h) did not reduce it further nor did it alter labeling of the 24,000-mol wt protein. We interpret these results to mean that a portion of the 32,000-mol wt proteins was removed leaving behind some of the original molecule and a small molecular weight fragment still attached to the membrane.

As a corollary to this work we incubated washed testicular spermatozoa in CEP diluted with PBS pH 7.4 to 1 mg/ml and washed cauda epididymidal spermatozoa in undiluted RTF (1 mg/ml) at 34°C for 60 min followed by further washing and labeling with galactose oxidase/NaB[3H]4. However, this treatment did not cause reciprocal labeling of either types of spermatozoa nor did it alter the amount of radiolabel present on the 110,000- and 32,000-mol wt proteins; fluorographs were similar to those of untreated controls.
other hand gave a more complex pattern. Major labeling was detected on proteins of 13,500, 14,000, 23,000, and 32,000 mol wt, with minor labeling on proteins of 47,000, 55,000, and 58,000 mol wt (Fig. 4). Preincubation of spermatozoa with neuraminidase abolished labeling of all the proteins listed above.

Evidence for Homology between Membrane-bound and Secreted 32,000-mol wt Proteins

Since the 32,000-mol wt glycoproteins were the major 'maturation antigens' which labeled on cauda epididymidal spermatozoa with galactose oxidase/NaB[H][3H], and sodium metaperiodate/NaB[3H]4, we have focussed our attention on their origin and their disposition relative to the sperm plasma membrane.

We have shown previously (26) that androgen-dependent glycoproteins with molecular weights of 32,000 are synthesized in the caput epididymidis and that they constitute ~10% of the total secreted protein. Evidence that the secreted and membrane-bound 32,000-mol wt proteins are homologous has now been shown by: (a) when CEP was incubated with galactose/NaB[3H]4, >90% of radiolabel incorporated into protein was associated with proteins of 32,000 mol wt (Fig. 5A); (b) the antiserum raised against the purified secreted proteins gave an intense reaction with the immunoperoxidase technique against cauda epididymidal spermatozoa (Fig. 6). Testicular spermatozoa, on the other hand, showed only a very small increase in the deposition of dye reagent between preimmune and immune sera. Furthermore, a precipitation line was obtained with the antiserum on Ouchterlony gels against DOC extracts of cauda epididymidal spermatozoa (Fig. 5B). However, treatment of DOC extracts from labeled testicular spermatozoa with antibody followed by incubation with Staphylococcus aureus did not precipitate any labeled protein.

Distribution and Disposition of 32,000-mol wt Proteins in the Plasma Membrane of Cauda Epididymidal Spermatozoa

Indirect immunofluorescence using the antibody raised against the 32,000-mol wt proteins and FITC-conjugated goat anti-rabbit IgG revealed a strong reaction over the entire surface of cauda epididymidal spermatozoa (Fig. 7). Fluorescence over the head region was noticeably less than over the remainder of the cell but this could have been due to loss of acrosome and underlying plasma membrane caused by the washing and labeling procedure. More noticeable was the patchy or interrupted distribution of the line of fluorescence over the plasma membrane. The size and frequency of these patches was irregular and not confined to a specific region of the cell. Testicular spermatozoa, on the other hand, showed no photographeable fluorescence. Spermatozoa incubated with preimmune serum were also negative.

To investigate whether the patchy distribution of the 32,000-mol wt proteins was indicative of the ability of these proteins to move laterally in the plane of the membrane, we first fixed cauda epididymidal spermatozoa in 2% glutaraldehyde in PBS for 20 min, washed, and then labeled then with fluorescent...
antibody as before. The result was a uniform distribution of fluorescence over the surface of the flagellum (Fig. 8). Similarly, if the entire labeling procedure was done at 4°C, then the flagellum was uniformly fluorescent. This argues against the possibility that the patchy distribution of antigen was due to damage and loss of areas of plasma membrane.

Incubation of galactose oxidase/NaBf[3H]-labeled cauda epididymidal spermatozoa in distilled water or 3 M KCl solubilized <1% of the radioactivity associated with the 32,000-mol wt proteins. Only detergents were fully effective in this respect, suggesting that the proteins are intrinsic to the membrane. Further evidence that the membrane-bound 32,000-mol wt proteins have hydrophobic domains and make structural contact with the lipid bilayer was shown using the photoaffinity probe and charge-shift electrophoresis. When a membrane fraction prepared from cauda epididymidal spermatozoa was labeled with 125I-nitrene reagent, ~70% of the total radioactivity added was recovered in the membrane pellet. Between 10 and 15% of the added radioactivity was incorporated into protein as assessed by precipitation of membranes with 10% TCA followed by extensive washing with ethanol:diethyl ether (3:1). Analysis of these membrane proteins on SDS polyacrylamide gels revealed a range of labeled proteins, with the major polypeptide of 32,000 mol wt (Fig. 9). This protein could be immunoprecipitated with the antiserum raised against the secreted 32,000-mol wt proteins. Although not shown in Fig. 9, shorter exposure of the autoradiograph revealed that the 32,000-mol wt band was, in fact, a doublet. A further indication
The glycoproteins are synthesized in different regions of the epididymis (6, 26) it is likely that these changes are coordinated into spermatozoa and epididymal secretory proteins. Since different of these changes are caused by a direct interaction between spermatozoa and epididymal secretory proteins. Different glycoproteins are synthesized in different regions of the epididymis (6, 26) it is likely that these changes are coordinated into a sequential series of events which culminate in the conferment of fertilizing capacity on the spermatozoa.

The limitations of the galactose oxidase/NaB\(^{3H}\) technique for labeling cell membranes have been reviewed (23). Membrane glycoproteins which do not contain accessible D-galactose or N-acetyl-D-galactosamine sugars will not label since steric hindrance is a problem with this technique (17). Surface labeling of sperm membrane proteins with galactose oxidase was first reported by Olson and Hamilton (40), but by optimizing the reaction conditions we have detected labeling of a wide range of glycoproteins on the sperm surface. Assuming that only plasma membrane proteins are labeled with the galactose oxidase/NaB\(^{3H}\) technique, then proteins of 42,000, 55,000, 64,000, 78,000, 110,000, and 180,000 mol wt have an external orientation on testicular spermatozoa, and proteins of 13,500, 32,000, 47,000, 84,000, and 150,000 mol wt are located on the plasma membrane of cauda epididymal spermatozoa. The 110,000- and 32,000-mol wt proteins are also the most heavily labeled after periodate oxidation, suggesting that they are sialoglycoproteins. It is noteworthy that the 13,500-mol wt protein appears to have more sialic acid than galactose residues, since it labels more heavily after periodate oxidation. However, both metaperiodate and NaB\(^{3H}\) are permeant reagents and some of the proteins shown in Fig. 2B may be intracellular, e.g. in the acrosome. In addition, certain membrane lipids also incorporate tritium after periodate oxidation (45). More radioactive label was incorporated into lipids in testicular than cauda epididymal spermatozoa but no further attempt was made to identify the chloroform:methanol soluble material.

Changes in the presence or distribution of glycoproteins on cell membranes as detected by labeling of carbohydrate moieties may reflect a variety of processes none of which are mutually exclusive. The decrease in labeling of the 110,000-mol wt protein on testicular spermatozoa as they pass through the epididymis may be caused by (a) removal of the whole glycopeptide from the membrane, e.g. by proteinases; (b) masking by the addition of other surface proteins; or (c) removal of the carbohydrate chain by the action of exo- and endoglycosidases. In the latter context it should be recalled that the epididymis is a very rich source of glycosidases and that the secretion of these enzymes is androgen-dependent (7, 24). The fact that labeled carbohydrate moieties on testicular spermatozoa can be removed during incubation in vitro with endo- or exoglycosidases also supports this possibility, although it is difficult to say whether the same mechanisms are operative in vivo or not.

Similarly, the appearance of glycoproteins on the plasma membrane of cauda epididymal spermatozoa that are not labeled on testicular spermatozoa may be explained either by the glycosylation of preexisting membrane proteins, by the analogy to the major blood group antigens ABH (10, 11), or by uptake of new proteins from the epididymal secretions. There is evidence for both these possibilities. Glycosyl transferases have been reported in testicular and epididymal fluids (3, 20) and could act in concert with glycosidases to modify preexisting membrane components. On the other hand, several of the proteins on cauda epididymidal spermatozoa that label after galactose oxidase or periodate oxidation are present in the epididymal secretions. Those proteins with 32,000 and 47,000 mol wts have been shown to be synthesized in the caput and cauda epididymidis, respectively, and to be androgen-dependent (26). Together with the fact that an antiserum raised against the secreted 32,000-mol wt proteins precipitates proteins with a similar molecular weight extracted from cauda epididymidal

DISCUSSION

The results of this investigation suggest that there is a considerable reconstruction of membrane glycoproteins on spermatozoa during their maturation in the epididymis and that some of these changes are caused by a direct interaction between spermatozoa and epididymal secretory proteins. Since different glycoproteins are synthesized in different regions of the epididymis (6, 26) it is likely that these changes are coordinated into...
secretory proteins bind to specific receptors sequestered into the membrane during spermiogenesis but to date such receptors have not been identified. Much remains to be learned, therefore, about the structure of the secreted v membrane-bound forms of these proteins.

The physiological effects of the acquisition of epididymal secretory proteins on spermatozoa remain unclear but many proteins are involved in cell-cell recognition, e.g. band III protein on erythrocytes. It is conceivable that by controlling cell contact, theentry and exit of ions, and low molecular weight compounds, or by acting as receptors, plasma membrane glycoproteins on spermatozoa may mediate a diverse range of functions such as maturation, capacitation, and ultimately fertilization.

The authors are grateful to Dr. M. J. Owen of the Imperial Cancer Research Fund, Lincoln's Inn Fields, London, for the gift of the 125I-nitrene reagent, and to Mrs. J. Constable and Mrs. M. Mansfield for typing the manuscript.

Received for publication 2 November 1981, and in revised form 22 September 1982.

REFERENCES

23. Kessler, S. W. 1973. Rapid isolation of antigens from cells with a staphylococcal protein A-antibody absorbent: parameters of the interaction of antibody-antigen complexes with spermatozoa but not testicular spermatozoa, the evidence in this particular case strongly suggests that they are of epididymal origin. We consider it likely that a similar situation may hold for the 47,000-mol wt protein since spermatozoa do not encounter this protein until they enter the cauda epididymis.

Therefore, the 110,000, 47,000, and 32,000-mol wt proteins are potentially good markers for assessing the degree of maturation of spermatozoa in the epididymis.

Since the 32,000-mol wt proteins are the major 'maturation antigens' which label on cauda epididymal spermatozoa, we have focussed our attention on the distribution and structure of these proteins in the plasma membrane. Many cells show a specific localization of surface antigens (14, 18) but our immunofluorescence data suggest that the 32,000-mol wt proteins are distributed over the surface of the flagellum and midpiece of mature spermatozoa, with possibly fewer sites on the head region. The presence of intensely fluorescent patches at irregular intervals along the membrane and the finding that the patching can be prevented by fixation or low temperature (Fig. 7) suggests that they possess a degree of lateral mobility within the plane of the membrane. Unlike the situation in B lymphocytes, however, there was no evidence that the patches 'capped'. O’Rand (41) has shown that patching of a membrane glycoprotein over the acrosomal region of uncapsulated rabbit spermatozoa occurs and that it disappears when the spermatozoa are capacitated. The irregular distribution of ferritin-conjugated lectins on spermatozoa (39) has also alluded to a class of mobile proteins in the plasma membrane. However, some membrane antigens appear to be restricted in their distribution as they are found only in specific regions, e.g. over the acrosome or midpiece (11, 38). How these proteins are anchored in one place is not known, but the evidence to date would indicate two types of proteins in the sperm plasma membrane: those that are demonstrably mobile, and those that are not.

The results of experiments with the 125I-nitrene reagent indicate that the sperm-associated 32,000-mol wt proteins are within or connected to the lipid bilayer, prompting the question of how secreted proteins are coupled to the plasma membrane. Hydrophobic domains do not seem to be present on the surface of the secreted proteins as assessed by charge-shift electrophoresis. In addition, calculations of the average hydrophobicity (H(ave)) (4) from their amino acid composition (26) give a value of 956 which does not indicate the existence of masked or internal hydrophobic areas. However, this situation is not without precedent. It is known that when cells are infected with cholera toxin, the B subunit binds to a GM1 monosialoganglioside receptor on the plasma membrane, forming a channel through which the A1 subunit interacts with the membrane. Only the A1 subunit labels with lipophilic photoaffinity probes, leading to the proposal that it alone partitions into the bilayer (49). However, calculations of the H(ave) of A1 (48) do not support this contention, nor does the observation that its migration on agarose gels is unaltered by charge-shift electrophoresis (48), that is, it behaves like a typical hydrophilic protein. The mechanism of its insertion, therefore, remains uncertain but it is conceivable that A1 enters the bilayer after interaction with an integral membrane protein as there is some evidence that it has a requirement for certain types of proteins (19). At present, a similar situation applies to the interaction of epididy- mal secretory proteins and the sperm plasma membrane. Other workers (13, 34, 47) have also reported coupling of antigens to the sperm surface during epididymal maturation but the mechanisms involved are not known. It is possible that

