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ABSTRACT The distribution of actin and myosin in Dictyostelium amebae at different devel- 
opmental stages was studied by improved immunofluorescence ("agar-overlay" technique). 
Both were localized at the cortical region of amebae in all early developmental stages. In 
amebae with polarized morphology, bright fluorescence with antiactin was seen in the anterior 
pseudopode. The cortex in the posterior end was also stained with antiactin. On the other 
hand, very specific crescent-shaped staining with antimyosin was seen at the posterior cortex. 
In cells in contact with each other, actin was concentrated at the contact region, whereas 
myosin was localized specifically in the cortex on the other side of the contact region. At the 
aggregation stage, when monopodial amebae migrate forming streams, actin staining was seen 
all around the cell periphery, with intense fluorescence in the anterior pseudopode. On the 
other hand, specific staining of myosin was seen only at the posterior cortex. The cleavage 
furrow of cells performing cytokinesis displayed distinct myosin staining, and this staining 
represented the filamentous structure aligned in parallel to the axis of constriction. These 
findings indicate that myosin staining reflects the portion of the cell cortex where contraction 
occurs and the motive force of ameboid movement is generated at the posterior cortex of a 
migrating cell. 

Actin and myosin are thought to play significant roles in the 
biological machinery in nonmuscle cell movement. However, 
the locomotory mechanism of a cell has not been totally 
elucidated. Dictyostelium is a good material for studying cell 
motility because it migrates by ameboid movement, one of 
the most conservative mechanisms of cell motility. Biochem- 
ical and electron microscopic studies have revealed the signif- 
icant concomitance of actin, myosin, and their associated 
proteins in cellular motile events of Dictyostelium (6, 12). 
The solation-contraction coupling hypothesis of Hellewell and 
Taylor (13) suggests a structural requirement of local break- 
down of the gel for contraction in the motile extract of 
Dictyostelium. However, the structural organization of the 
contractile components in intact cells has not been fully 
clarified. 

Initial immunofluorescence using antiactin showed that 
vegetative amebae were stained uniformly whereas actively 
migrating cells are stained strongly at their leading edges (8). 
Recently, Bazari and Clarke (2) demonstrated that calmodulin 

and myosin are localized in the peripheral region. Condeelis 
et al. (5) and Brier et al. (3), using conventional immunoflu- 
orescence, found that 120- and 95-kdalton actin-binding pro- 
teins are also localized at the cell periphery. 

Partially because of the round shape and small size of 
Dictyoslelium amebae, no detailed information on the spatial 
organization of cytoskeletal components has been provided 
by conventional immunofluorescence. We thus improved the 
technique and identified the localization of microtubules (17, 
30). In the present study, we document the localization of 
actin and myosin in various developmental stages of amebae 
revealed by the improved agar-overlay technique using rabbit 
antiactin and newly obtained monoclonal anti-Dictyostelium 
myosin antibodies. The agar-overlay technique can preserve 
cellular structures during the fixation and prevent their dis- 
ruption during sample preparation. 

Interestingly, very specific myosin staining was observed at 
the posterior cortex of the migrating amebae, whereas actin 
staining was localized in the anterior pseudopodes and the 
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posterior cortex. This finding suggested that the motive force 
of ameboid movement is generated at the posterior cortex of 
migrating cells. The possible role of actin in the anterior 
pseudopode is discussed in relation to speculative coupling in 
the organization of cytoskeletal elements involved in the 
ameboid movement. 

MATERIALS AND METHODS 

Cells and Cultures: Dictyostelium discoideum (Ax-2) was cultured in 
HL-5 (29) medium for the purification of myosin. The wild type (NC-4) was 
grown with Escherichia coli (B/r) on nutrient agar and used for all the 
immunofluorescence. The cells were suspended and washed twice with 15 mM 
Na/K-phosphate buffer (pH 6.4), then inoculated on 2% agar. They were 
allowed to develop until the appropriate stages and then harvested prior to the 
preparation of immunofluorescent samples. 

Derivation of Hybridomas: Dictyostelium myosin was purified 
according to the methods of Clarke and Spudich (4) and Mockrin and Spudicb 
(22). 4-5-wk-old mice were intraperitoneally injected with 100 pg of myosin in 
Freund's complete adjuvant. 2 wk later, a booster of 100 ug of myosin mixed 
with incomplete adjuvant was given intraperitoneally. 1 wk later, the antibody 
activity was examined by enzyme-linked immunosorbent assay (9) and all the 
mice gave positive results. 4 wk after the primary immunization, 200 ~g of 
myosin in PBS (138 mM NaCI, 2.7 mM KCI, 8 mM Na/K-phosphate buffer 
[pH 7.2]) was injected intraperitoneally, and 2 d later 100 #g of myosin in PBS 
was injected both intraperitoneally and intravenously. 2 d after the final 
immunization, the spleen cells were fused with Sp2/0-Ag 14 mouse myelomas 
(26). Hybridomas producing antibodies against myosin were screened by en- 
zyme-linked immunosorbent assay, and the final screening was performed by 
indirect immunofluorescence. 

After cloning by limiting dilution, two hybridomas were established and 
named DM-2 or DM-6 (DM: Dictyostelium myosin~). The monoclonal DM-2 
antibody was mainly used in the present study. Whole sera of the positive mice 
were collected and used for the polyclonal control staining. 

Indirect Immunofluorescence:  Cells at each developmental stage 
were harvested and suspended in the phosphate buffer, and an aliquot of the 
suspension was placed on a coverslip. A thin agarose sheet (0.15 mm thick, 
8 x 8 mm square wide, made of 2% agarose [immunological grade] dissolved 
in the phosphate buffer) was put on the cells. Excess buffer was removed asing 
small pieces of filter paper, and the sample was observed under a phase-contrast 
microscope. When the cells were at the appropriate condition, the buffer was 
removed from the surface of the agarose until the cells became very fiat due to 
the mechanical pressure. Details of this technique will be furnished on request. 
The samples were immersed in -10*C methanol and fixed for 5 min. After a 
brief rinse with PBS, the samples were incubated with the primary antibody 
(DM-2 culture medium or rabbit anti-chicken gizzard actin serum [I :20]) for 
30 min at 37"C. The samples were washed for 30 rain with PBS (this washing 
was indispensable to prevent background staining). They were then incubated 
with fluorescein isothiocyanate-labeled second antibody preadsorbed with Dic- 
tyostelium cell lysate. 

The preadsorption was done as follows. The cell pellet (0.1 ml) was fixed for 
5 min with cold methanol (-10*C), washed three times with PBS, and resus- 
pended in 500 pl of the second antibody ([1:25] diluted with PBS containing 
0.1% (wt/vol) NAN3; Cappel or Miles-Yeda). The suspension was incubated for 
30 min at 36"C, then centrifuged for 30 rain at 13,000 rpm, and finally the 
adsorbed antibody was carefully collected using a Pasteur pipette. The adsorbed 
antibody could be kept for as long as one month in a refrigerator. 

The samples were finally washed with PBS, briefly rinsed with distilled water, 
and mounted with Gelvator (24) containing 1 mg/ml p-phenylenediamine (15). 
The fluorescent micrographs were taken under an Olympus epifluorescence 
microscope (BH-RFL) equipped with x 100 lens (NA 1.25) using Kodak Tri- 
X film and developed with Acufine (Acufine, Inc., Chicago, IL). 

Immunoblot t ing:  SDS PAGE was performed according to Laemmli 
(20) on 10% slab gel, and the protein was electrophoretically transferred (28) 
to nitrocellulose paper (Bio-Rad Laboratories, Richmond, CA) for 22 h at 0.1 
A (3 V/cm) in the buffer containing 25 mM Tris-base, 192 mM glycine, 0.1% 
SDS, and 20% methanol. The paper was blocked with 3% gelatin (Bio-Rad 
Laboratories), and sequentially incubated with DM-2 antibody (1:1 culture 
medium containing 3% BSA), TTBS (0.05% Tween-20 in Tris-buffered saline 
[pH 7.5]), peroxidase-labeled second antibody (HRPO-rabbit anti-mouse IgG 
[Litton]; 1:330 diluted with TBS containing 3% BSA and 1% gelatin), TTBS, 
and finally with 0.5 mg/ml 4-chloro-l-naphthol and 0.5 pl/ml H202 (30%) for 
color development. 

~ Abbreviation used in this paper. DM, Dictyostelium myosin. 

RESULTS 

Specificity of Antibodies 
The antibody of DM-2 hybridoma was of the IgG class as 

shown by the Ouchterlony double diffusion test (data not 
shown), and the specificity was tested by immunoblotting. 
DM-2 antibody was reactive to the heavy chain of purified 
Dictyostelium myosin (Fig. 1, c and g) as well as the corre- 
sponding band in the whole cell lysate (Fig. 1, b and f). 
However, DM-2 crossreacted with neither rabbit skeletal mus- 
cle myosin (Fig. 1, d and h) nor chicken gizzard smooth 
muscle myosin (210-kdalton band in Fig. 1, a and e). 

In the initial experiments, some minor bands ranging 170- 
180 kdaltons represented positive reaction with DM-2. We 
could not totally eliminate the contamination of these minor 
bands from the myosin preparation by adding protease inhib- 
itors to the purification buffers (50 pg/ml leupeptin, 1 mM 
PMSF [phenylmethylsulfonyl fluoride], and 0.1 mM TLCK 
[o-tosyl-L-lysine chloromethyl ketone hydrochloride]). These 
bands were likely to be degradation products of the myosin 
heavy chain since the amount of these proteins included in 
the whole cell lysate decreased significantly by solubilizing 
the cells by adding prewarmed SDS sample buffer to the cell 
pellet (Fig. 1 b). 

The specificity of the immunofluorescence was tested by 
several control experiments including (a) the staining without 
the primary antibody or (b) with preimmune mouse serum 
for the primary antibody. In the initial experiments, some 
background staining was occasionally observed even by the 
control staining. This nonspecific staining was apparently 
caused from the second antibody, and could be eliminated by 
the preadsorption of the fluorochrome-labeled antibody with 
Dictyostelium lysate as described in Materials and Methods. 

FIGURE 1 Western blot of the monoclonal anti-Dictyostelium 
myosin (DM-2) antibody. The samples were electrophoresed on 
10% SDS PAGE and stained with Coomasie Blue (a-d) or after 
blotting to nitrocellulose paper, labeled with peroxidase-labeled 
anti-mouse IgG subsequent to the incubation with DM-2 (e-h). 
Lanes a and e, molecular weight markers; lanes b and f, Dictyoste- 
lium cell lysate (25 pg); lanes c and g, Dictyostelium myosin (5 ~g); 
lanes d and h, rabbit skeletal muscle myosin (5 pg). DM-2 specifically 
bound to the heavy chain of Dictyostefium myosin (f and g) but 
neither to rabbit skeletal (d and h) nor chicken gizzard smooth 
muscle myosin (210-kdalton band in a and e). Values are molecular 
weight × 10 -3. 
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Preservation of Cell Structure by the Agar- 
overlay Technique 

Migrating Dictyostelium amebae are not large enough (8- 
~m diam) or fiat enough to allow light microscopic observa- 
tion of their cellular structures, as shown by scanning electron 
microscopy (see Fig. 2 A of reference 30). Furthermore, their 
cytoskeletal machinery are very small and no stable large 
structures (such as stress fibers) are visible. In addition, their 
cytoskeletons are susceptible to the mechanical disturbances 
that are inevitable during preparation of samples for immu- 
nofluorescence. We tried to overcome these problems by 
laying a thin agarose sheet over the cells before fixation and 
performing the immunofluorescence procedure under this 
condition. The amebae could migrate normally and undergo 
aggregation under the agarose sheet. Microscopic images of 
the cells improved greatly with this technique, and cellular 
organelles such as pseudopodes, mitochondria, nuclei, nu- 
cleoli, and even nuclear-associated bodies (19, 25) could be 
identified under a phase-contrast microscope. In addition, the 
mechanical support by the agarose sheet resulted in good 
preservation of the micro- as well as macromorphology of the 
cells, as shown by comparative phase-contrast microscopy 
before and after fixation with cold methanol (Fig. 2). 

Actin and Myosin in Vegetative Ce l l s  

In the vegetative stage, the cells feed on Escherichia coli, 
divide by binary fission every 3 h, and have a round shape 
with a few small pseudopodes. Actin staining caused a diffuse 
fluorescence all over the cytoplasm, whereas antimyosin spe- 
cifically stained the periphery of the cells (Fig. 3, a-d). The 
different distributions of actin and myosin were not unex- 
pected, since cortical motile activity is not prominent at this 
stage and the cortical machinery is likely to be organized at 
the same time as the activation of the motile event. This idea 
was supported by the observed changes in the pattern of the 
actin staining during the transformation from the vegetative 
to migratory amebae; both actin and myosin stainings were 
evident at the cell cortex at this stage (Fig. 3, e-h). 

To assess the possible involvement of actin and myosin in 
specific motile activities, special attention was paid to the cells 
performing cytokinesis or phagocytosis. The polar pseudo- 
podes in dividing cells were stained with antiactin (Fig. 3, i 
and j). However, very specific staining with antimyosin was 
observed at the constricted region of the dividing cells. Inter- 
estingly, this myosin staining showed a filamentous structure 
aligned parallel to the axis of constriction (Fig. 3, k and 1), 
although no specific actin-containing structure was seen in 

FIGURE 2 Comparative phase-contrast microscopy of Dictyoste- 
lium amebae before (a) and after (b) fixation by the agar-overlay 
technique. Cell structure was well preserved and the arrow indi- 
cates the site of the nuclear-associated body (microtubule-organiz- 
ing center). Bars, 5/~m. 
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FIGURE 3 Indirect immunofluorescence of vegetative Dictyoste- 
lium amebae prepared by the agar-overlay technique showing the 
distribution of actin and myosin. (a and b) A vegetative amebae 
stained with antiactin showing diffuse fluorescence in the cyto- 
plasm. (c and d) A vegetative ameba stained with monoclonal 
antimyosin (DM-2) showing peripheral staining. (e and f) A round 
cell that was allowed to develop for 2 h on agar plate was then 
fixed and stained with antiactin. Peripheral staining became evident 
by 2 h of incubation. (g and h) A round cell like that of e, stained 
with DM-2, and showing peripheral staining. (i and j) A dividing 
(telophase) cell stained with antiactin. Note the staining of pollar 
small pseudopodes (arrows in j). (k and /) A dividing cell stained 
with DM-2. Note the specific staining at the cleavage furrow. The 
staining pattern suggests that the filamentous structure is aligned 
parallel to the axis of constriction. Bar, 5 urn. 



this region (Fig. 3j). Staining of the phagocytic cup was similar 
to that of the anterior pseudopode; i. e., brightly stained with 
antiactin, but not with antimyosin (data not shown). 

Actin and Myosin in Locomotory Cells 
When the amebae were harvested and inoculated onto the 

agar plate, they started active locomotion in 2-3 h. At this 
stage, both the anterior pseudopode and the posterior cortex 
were stained with antiactin whereas only the posterior cortex 
was stained with antimyosin (Fig. 4, a-d). Clearly, two classes 
of anterior pseudopodes were present, appearing as dark and 
light regions under a microscope equiped with dark-contrast 
phase optics. The dark region was stained strongly with an- 
tiactin but the light region was not. The light pseudopode 
looked like a hyaline region, and the boundary between this 
region and the ground cytoplasm showed actin staining that 
might be due to a cortical actin layer (arrowhead in Fig. 4 f). 
The differences in the staining of pseudopodes may indicate 
differences in the actin organization of these pseudopodes. 

In cells in contact with each other, the contact sites were 
stained strongly with antiactin (Fig. 4, g and h), whereas no 
staining was observed with antimyosin. This may be due to 
the well-developed microfilament mesh found by transmis- 
sion electron microscopy (see Fig. 3 c of reference 11). The 
periphery on the other side of the contact region was specifi- 
cally stained with antimyosin (Fig. 4, i and j). 

Actin and Myosin in Aggregating Cells 
In the aggregation stage, when the amebae aggregate in 

streams, elongated cells migrate forming head-to-tail as well 
as side-by-side associations. In this stage, not only the pointed 
pseudopode and posterior region but also the lateral cortical 
region were stained with antiactin (Fig. 5, a and b). Anti- 
myosin only stained the lateral and the posterior cortex (Fig. 
5, f and g). In the tip of the pseudopode, peculiar rod-like 
staining with antiactin, not seen in other stages, was promi- 
nent (Fig. 5, c and d). 

We obtained good macroscopic images of the aggregate by 
the agar-overlay technique (Fig. 5, a-e). Very bright myosin 
staining was particularly observed at the posterior end next to 
the lateral cortex of the cells at the periphery of the aggregate 
(Fig. 5 e). This myosin staining suggested that a centripetal 
force was generated at the outermost cortex of the peripheral 
cells and this force might be required for the formation of the 
aggregate. This idea was supported by evidence for myosin 
localization in contacting cells that looked as though they 
were pushing each other (Fig. 4j). 

DISCUSSION 

Assessment of the Agar-overlay Technique 
Extraction of plasmodium placed between two sheets of 

agar with glycerol was first reported with Physarum polyceph- 
alum (16). This method was recently applied for the immu- 
nofluorescence of Physarum plasmodium and was shown to 
be efficient for providing good immunofluorescent images 
(23). In the present study, we found that the agar-overlay 
technique is very useful for either phase-contrast or immu- 
nofluorescent microscopy of Dictyostelium amebae as small 
as 8-~m diam. The drawback of this technique is a possible 
artifact arising from mechanical stress from the agarose, which 
might cause peripheral staining of actin and myosin. To 

FIGURE 4 Distribution of actin and myosin in Iocomotory amebae 
prepared by the agar-overlay technique. (a and b) An actively 
Iocomoting cell stained with antiactin. Note the bright staining of 
the anterior pseudopode (short arrow in b). Staining of the posterior 
cortex (long arrow) was also prominent. (c and d) A monopodial 
cell stained with monoclonal antimyosin (DM-2). The cortex in the 
posterior end was specifically stained. (e and f) A cell with actively 
extending pseudopodes stained with antiactin. The dark pseudo- 
pode (short arrows) was stained brightly whereas the light pseudo- 
pode (long arrows) was not. Note the staining at the boundary of 
the light pseudopode and the ground cytoplasm (arrowhead in f). 
(g and h) Two cells in contact with each other stained with antiactin. 
Bright staining was prominent in the contact regions. (i and j) Two 
cells in contact with each other stained with DM-2. The cortices on 
the other side of the contact regions were stained. Bars, 5 ~,m. 

circumvent this problem, we compared the staining patterns 
of fiat cells prepared by the agar-overlay technique with those 
of round cells prepared by conventional fixation procedure. 
We found that fixation with cold methanol totally disrupted 
the structure of suspended round cells. Thus, conventional 
fixation with 3.7% formaldehyde in PBS or 15 mM phosphate 
buffer is not suitable because it results in drastic shrinkage of 
the cells. Careful reconsideration of the fixation protocol for 
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FIGURE 6 (a and b) Immunofluorescence of suspended cells pre- 
pared by a conventional method. The cells were fixed with form- 
aldehyde, extracted with methanol, then stained with antiactin. The 
cell periphery was stained most brightly, showing the plausibility of 
cortical staining after the agar-overlay procedure. (c and d) Immu- 
nofluorescence using polyclonal antimyosin serum, showing the 
staining pattern was essentially identical to that with DM-2. Bars, 5 
#m.  

FIGURE 5 Distribution of actin and myosin in aggregating amebae 
prepared by the agar-overlay technique. (a and b) Staining with 
antiactin of cells undergoing spiral movement to the aggregation 
center, The anterior pseudopode and the cell cortex were stained. 
(c and d) High magnification micrographs of cells in the aggregation 
stream stained with antiactin. Note the rod-like staining in the 
anterior pseudopode and a comparative phase-contrast image (ar- 
rows). (e) Macroscopic immunofluorescence of the aggregation 
center stained with monoclonal antimyosin (DM-2). Staining of the 
lateral as well as the posterior cortex was prominent in the cells at 
the outermost periphery of the aggregate. (f and g) High magnifi- 
cation micrographs of cells in the aggregation stream stained with 
DM-2. Note the specific staining of the lateral as well as the 
posterior cortex. Bars, 5 ~m. 

suspended cells showed that fixation with 2.5% formaldehyde 
in the phosphate buffer for 10 min followed by extraction 
with -10°C methanol for 5 min resulted in good preservation 
of the cellular morphology. Actin and myosin were also 
localized mainly at the cortical region of the suspended cells 
(Fig. 6, a and b). This observation, together with the evidence 
that the amebae could undergo normal aggregation, encour- 
aged us to apply the agar-overlay technique for the immuno- 

fluorescence. We were rewarded with well-preserved cellular 
structures and high-resolution fluorescent images. 

Evaluation of the Fluorescent Staining 
Cellular structures were well preserved by the agar-overlay 

technique despite the fact that no strong cross-linking fixatives 
are allowed in immunofluorescence. The good preservation 
probably resulted from (a) rapid fixation by dipping the 
samples into cold methonal and (b) the prevention of disrup- 
tion during the staining steps. 

We next considered whether the crescent-shaped fluores- 
cence by monoclonal DM-2 antibody reflects the specific 
supramolecular architecture of myosin, since monoclonal 
antibodies only recognizing specific epitopes are not unusual 
(7). We found that the staining patterns by polyclonal anti- 
myosin sera were essentially identical to those by DM-2 (Fig. 
6, c and d). This indicated that the fluorescence by DM-2 
must correctly reflect the localization of myosin. 

Several different patterns were observed in the staining with 
polyclonal antiactin. Very dense patch-like fluorescence (Fig. 
4h) might reflect the well-developed microfilament mesh- 
works revealed by electron microscopy (see Fig. 3 c of refer- 
ence 11 ). Peripheral staining might represent the loose micro- 
filament layers localized beneath the plasma membrane (see 
Fig. 3D of reference 11). The diffuse fluorescence in the 
cytoplasm by antiactin (Fig. 3 b) probably reflect the loose 
cytoplasmic mesh of microfilaments (represented by Cf in 
Fig. 2 of reference 10). The diffuse fluorescence probably does 
not reflect the monomeric form of actin, since soluble proteins 
are not likely to remain after the methanol fixation. Thus, the 
differential patterns of fluorescence seem to represent the 
different modes of organization of actin filaments. 

We recognize that we must carefully evaluate the influence 
of the accessible volume on the amount of fluorescence (1). 
For example, we cannot exclude the possible influence of the 
difference in the pathlength caused by the included organelles 
(excluded volumes), although the thickness of the cells is 
mostly constant because of the overlaid agarose. However, 
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the totally different staining patterns of actin and myosin and 
the difference in the antiactin staining in some pseudopodes 
(Fig. 4, e and f )  suggest that the amount of the fluorescence 
could not be totally, if any, interpreted by the accessible 
volume. 

Significance of the Differential Organization of 
Actin and Myosin 

An explanation was sought for the weak fluorescence of 
actin that was observed in regions where very strong and 
specific localization of myosin was found. The actin filaments 
may be organized to form only diffuse mesh works or bundles 
at the site where the force will be generated by a speculative 
sliding mechanism in analogy to the "sliding filament" theory 
(14) in skeletal muscle. This organization may be related to 
the contractile state of actin as proposed by Hellewell and 
Taylor (13) and might exhibit a very weak fluorescence. 
Conversely, the dense fluorescence by actin at the anterior 
pseudopode or at the contact region may reflect totally differ- 
ent forms of actin which might be involved in novel functions 
ofDictyostelium actin in terms of the determination of cellular 
polarity (30) as well as cell adhesion. 

The differential organization ofcytoskeletal elements in the 
cell cortex has been suggested by our previous study (30) and 
must be related to the multiforms of the regulatory compart- 
ments of  Dictyostelium. Cortical distribution of some actin- 
binding proteins has been reported by Condeelis et al. (5) and 
Brier et al. (3), and Bazari and Clarke (2) have reported on a 
calmodulin localization in the cortical region. Our agar-ov- 
erlay technique should be useful for studying the differential 
distribution of these regulatory components in the cell cortex. 
Specific fluorescence by antimyosin at the posterior cortex 
may represent the polymerized form of myosin regulated by 
dephosphorylation of its heavy chains, as revealed by 
Kuczmarski and Spudich (18). 

Possible Coordination of the Differential 
Cortical Organization 

The present study has suggested that there are different 
forms of actin in the supramolecular organization in the cell 
cortex. The posterior accumulation of myosin suggested that 
the motive force of the ameboid movement is generated at 
the posterior end, supporting the idea originally proposed by 
Mast (21) for Ameba. Also, this localization of myosin might 
be coupled with the formation of  the anterior pseudopode 
which showed bright actin staining. This suggestion led us to 
speculate that the differential organization of  cytoskeletal 
elements is coordinated with physiological activities, i.e., 
chemotactic movement. This coordination has been suggested 
by a sophisticated study by Swanson and Taylor (27) in 
chemotactically activated amebae. The high resolution im- 
munofluorescence by the agar-overlay technique should pro- 
vide significant information along this line of studies. 

We are indebted to Dr. M. Ishiura and Mr. S. Taki for their help 
during our initial immunofluorescence studies using antiDNase I, 
and to Dr. I. Yahara of the Tokyo Metropolitan Institute of Medical 
Science for generously providing a rabbit antiactin serum. We thank 
Dr. K. Fujiwara of the Department of Anatomy, Harvard Medical 
School for generously providing antiserum against platelet myosin at 
the initiation of this work. Special thanks are due to Dr. S. H. Blose 
of the Cold Spring Harbor Laboratory for his technical advice on the 

i m m u n o f l u o r e s c e n c e .  W e  a re  grateful  to Dr.  R. D.  G o l d m a n  a n d  Dr.  

E. R. K u c z m a r s k i  for  the i r  cons t ruc t ive  discussions in the  p r e p a r a t i o n  

o f  the  m a n u s c r i p t  d u r i n g  the  s tay o f  Y.  F u k u i  a t  the  N o r t h w e s t e r n  

Un ive r s i t y  Medica l  School.  W e  t h a n k  Mrs.  J u d y  N o g u c h i  for  he r  

pa ins t ak ing  p roof read ing .  W e  a re  obl iged to  Dr.  H .  Sh ibaoka  for his 

suppor t  o f  this work .  

Th is  w o r k  was  suppo r t ed  by  G r a n t  57440002  a n d  58340035  f r o m  

the  J a p a n e s e  Min is t ry  o f  Educa t ion .  

Received for publication 23 February 1984, and in revised form 22 
May 1984. 

Note Added in Proof During the preparation of the manuscript, 
Rubino and co-workers (Rubino, S., M. Fighetti, E. Unger, and P. 
Cappuccinelli, 1984, J. Cell Biol., 98:382-390.) published an article 
on the immunofluorescent localization ofactin, myosin, and tubulin 
of Dictyostelium. 
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