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Abstract. In this study we have used several comple- 
mentary techniques to isolate and characterize a 72- 
kD polypeptide that is tightly associated with a major 
mouse T- lymphoma membrane glycoprotein, gp 85 (a 
wheat germ agglutinin-binding protein), in a 16 S 
complex. These two proteins do not separate in the 
presence of  high salt but can be dissociated by treat- 
ment  with 2 M urea. 

Further analysis indicates that the 72-kD protein 
has ankyrin-like properties based on the following cri- 
teria: (a) it cross-reacts with specific antibodies raised 
against erythrocyte and brain ankyrin; (b) it displays a 
peptide mapping pattern and a pI (between 6.5 and 
6.8) similar to that of  the 72-kD proteolytic fragment 

of  erythrocyte ankyrin; (c) it competes with erythro- 
cyte ghost membranes (spectrin-depleted preparations) 
for spectrin binding; and (d) it binds to purified spec- 
trin and fodrin molecules. Most importantly, in intact 
lymphoma cells this ankyrin-like protein is localized 
directly underneath the plasma membrane and is 
found to be preferentially accumulated beneath recep- 
tor cap structures as well as associated with a mem- 
brane-cytoskeleton complex preparation. 

It is proposed that the ankyrin-like 72-kD protein 
may play an important role in linking certain surface 
glycoprotein(s) to fodrin which, in turn, binds to actin 
filaments required for lymphocyte cap formation. 

I 
N all eukaryotic cells that have been studied, there appears 
to be an association between the surface membrane and 
the underlying cytoskeletat network (7, 21). Currently, 

the most well-defined membrane-cytoskeleton organization 
is that which exists in erythrocytes. In these cells, the linkage 
between spectrin (a cytoplasmic actin-binding protein) and 
band 3 membrane protein (an anion transport channel) is 
mediated by the membrane attachment protein, ankyrin (1, 
40). Restricted proteolytic digestion of isolated ankyrin has 
been used to identify at least two functional domains of the 
molecule. The 72-kD chymotryptic or 65/55-kD tryptic frag- 
ments bind spectrin whereas the 82/83-kD chymotryptic and 
tryptic fragments bind to the cytoplasmic domain of band 3 
(1, 39, 40). 

Since receptor capping was first described in lymphocytes 
(33), a great deal of research effort has been directed toward 
determining the molecular mechanisms responsible for this 
very interesting and important phenomenon (10). It is now 
generally agreed that the cytoskeleton is involved, either di- 
rectly or indirectly, in the lateral redistribution of surface 
molecules into a cap structure (10). Proteins analogous to 
those found in the erythrocyte membrane-cytoskeleton com- 
plex, such as spectrin (13, 26, 28), ankyrin (4, 7), and band 3 
(18), have all been found in non-erythroid cells including 
lymphocytes. In addition, all three of the proteins have been 
shown to co-cap with surface receptor cap structures (7, 13, 
18, 26, 28). 

In this paper, we report the isolation of an ankyrin-like, 72- 
kD protein that is tightly associated with a wheat germ agglu- 
tinin (WGA)-binding 1 protein, gp 85, in mouse T-lymphoma 
cells. Biochemical analyses indicate that this protein shares 
several structural and functional similarities with erythrocyte 
ankyrin. Cytochemical studies indicate that the ankyrin-like 
protein is located on the cytoplasmic side of the plasma 
membrane and co-caps underneath receptor cap structures. It 
is suggested that this ankyrin-like 72-kD protein may be 
responsible for the linkage between certain membrane pro- 
tein(s) and the cytoskeleton which is required for lymphocyte 
cap formation. 

Materials and Methods 

Cells 
Mouse T-lymphoma cells (BW 5147), provided by R. Hyman (The Salk 
Institute, San Diego, CA) were grown at 37"C in Dulbeceo's modified Eagle's 
medium supplemented with 10% heat-inactivated horse serum (GIBCO, Grand 
Island, NY) and equilibrated in 5% CO2/95% air. 

Induction of Capping 
Ceils were harvested at a density o f -  1 × 10 6 cells/ml and washed with serum- 

1. Abbreviations used in this paper: GlcNAc, N-acetyl-glueosamine; PMSF, 
phenylmethylsulfonyl fluoride; TEAPL, 50 mM Tris-HCl (oH 7.4), 5 mM 
EGTA, I t~g/ml aprotinin, 10 -~ M PMSF, 1 tzg/ml leupeptin; WGA, wheat 
germ agglutinin. 
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free RPMI 1640 medium (G1BCO). To induce cap formation, cells were 
incubated with either lectins (e.g., WGA and concanavalin A) or the monoclo- 
nal rat antibodies to the lymphocyte surface glycoproteins, Thy-1, T-200, and 
viral gp 69/71 (gifts kindly provided by Dr. Ian Trowbridge, The Salk Institute, 
San Diego, CA) followed by the addition of a secondary antibody (e.g., rabbit 
anti-rat or goat anti-rat immunoglobulin) at room temperature or 37"C for 20 
min. 

Radioactive Labeling of Cellular Proteins 
Surface proteins and isolated cellular proteins were labeled with 1251 using the 
iodogen method of Fraker and Speck (20). 

Plasma Membrane Isolation 
Crude plasma membranes from capped or uncapped cells were isolated using 
the method described by Johnson and Bourne (23) with slight modifications. 
Cells labeled with t251 by the iodogen method as described above were harvested 
by low speed centrifugation (500 g,v), washed with phosphate-buffered Earle's 
salt solution, pH 7.3, and resuspended in a solution of 20 mM Hepes (pH 7.3), 
2 mM EDTA, I mM phenylmethylsulfonyl fluoride (PMSF), 1 mM mercap- 
toethanol at 0*C. These cells were lysed using a Dounce homogenizer. The 
lysate was centrifuged at 750 g,v for 5 min and the resulting supernatant 
centrifuged at 43,000 glv for 20 min as described previously (13). The resulting 
membrane pellet was then used for all experiments. 

Non-ionic Detergent Extraction 
Crude plasma membranes from either capped or uncapped ceils were washed 
in TEAPL buffer (50 mM Tris-HCl [pH 7.4], 5 mM EGTA, 1 #g/ml aprotinin, 
10 -3 M PMSF, 1 #g/ml leupeptin). Detergent extraction was accomplished by 
adding either Triton X-100 or Nonidet P-40 to the TEAPL buffer to a final 
concentration of 1% (vol/vol). Protein concentration in all samples was kept 
at ~0.5 mg/ml. The samples were incubated at 0*C for 20 rain with frequent 
vortexing and then centrifuged at 100,000 g,v for 45 rain. After centrifugation, 
the supernatant (i.e., detergent-soluble fraction) and the pellet (i.e., detergent- 
insoluble fraction) were collected for further biochemical analysis as described 
previously (12, 13). Previous studies have shown that the detergent-insoluble 
fraction contains the membrane-associated cytoskeleton (12, 13). 

SDS PAGE and Autoradiographic Analysis 
One-dimensional PAGE. Electrophoresis was conducted using an exponential 
polyacrylamide gradient (6.0-17.0%) slab gel and the discontinuous buffer 
system described by Laemmli (25). 

Two-dimensional PAGE. First-dimension isoeleetric focusing gels contained 
2% LKB ampholytes (pH 3.5-10). Second-dimension gels were 10% acrylamide 
as described previously (29). 

Polypeptide banding patterns were revealed by either Coomassie Blue or 
silver staining procedures, and quantitated by scanning densitometry. Samples 
labeled with ~2sI were fluorographed (5), vacuum dried, and exposed to Kodak 
x-ray (X-Omat, Xar-5) film at -70"C. 

WGA-Sepharose Column Chromatography 
A WGA-Sepharose (Pharmacia Fine Chemicals, Piscataway, N J) column (6.0 
× 0.5 cm) was equilibrated with 5 mM EGTA, 50 mM Tris-HCl (pH 7.4) 
containing 1% Triton X-100. Crude plasma membrane isolated from ~25I- 
labeled cells was washed in TEAPL buffer (50 mM Tris-HC1 [pH 7.4], 5 mM 
EGTA, 1 #g/ml aprotinin, 10 -3 M PMSF, 1 #g/ml leupeptin) and then 
solubilized in 1% Triton X-100 for 30 rain at 4"C. The protein concentration 
in all samples was kept at -2.5 mg/ml. After extraction, the samples were 
centrifuged at 10,000 g,v for 10 min, and the resulting supernatant was then 
passed over the WGA column at least 10 times to allow for sufficient binding. 
The column was then washed with same TEAPL buffer containing 1% Triton 
X-100 until no further radioactivity was removed. The TEAPL buffer contain- 
ing 0.5 M N-acetyl-giucosamine (GlcNAc) was then used to elute the column. 
Fractions containing specifically eluted radioactive proteins were pooled and 
analyzed by sucrose gradient centrifugation as described below. 

Isolation of 72-kD Protein and gp 85 Complex 
12~l-labeled plasma membrane was isolated from intact ceils, solubilized by 1% 
Triton X-100, bound to a WGA column, and elnted by 0.5 M GIcNAc as 
described above. The GlcNAc eluant was then loaded onto a linear sucrose 
gradient (7-28%) with a 0.5-ml cushion of 65% sucrose and centrifuged at 
70,000 g,v for 22 h. Thirty-four 0.5-ml fractions were collected from the bottom 
of each tube. Fractions were counted on a LKB miniGamma counter to 
determine the distribution of surface-iodinated protein within the gradient. ]2~I- 

labeled protein peaks were pooled, precipitated with 10% trichloroacetic acid, 
and subsequently analyzed by SDS PAGE and autoradiography. The t2~I- 
labeled peak fractions corresponded to a sedimentation value of 8 S and 16 S 
as calculated using protein standards of tetrameric fodrin, tetrameric spectrin 
(11 S), and G-actin (3.7 S) as described previously (13, 22, 30). 

Effect of High Salt on the 16 S Complex 
The ~251-1abeled 16 S material, isolated as described above, was incubated with 
0.6 M NaCI, 50 mM Tris-HCl (pH 8.0), 5 mM EGTA, 1 #g/ml aprotinin, 10 -3 
M PMSF, 1 ug/mi leupeptin containing 1% Triton X-100 overnight at 4"C, re- 
bound to a WGA column, eluted with 0.5 M GlcNAc, and then centrifuged on 
a linear sucrose gradient (7-28%) for 22 h at 70,000 g,~. The 16 S control 
material, incubated in the same buffer in the absence of 0.6 M NaCI, was run 
on a parallel 7-28% sucrose gradient. Parallel gradients containing ~2~l-labeled 
G-actin and spectrin were used to determine relative sedimentation coefficients. 

Isolation of the 72-kD Protein and gp 85 Protein 
Both high salt-treated material and control 16 S material containing ~2~I-labeled 
protein peaks were then re-bound to a WGA column and washed with 50 mM 
Tris-HCl (pH 8.0), 5 mM EGTA, 1 #g/ml aprotinin, 10 -s M PMSF, 1 #g/ml 
leupeptin in the presence or absence of 0.6 M NaCI, respectively. Proteins that 
remained tightly bound to the WGA column were then sequentially eluted with 
2 M urea to obtain pure 72-kD protein followed by 0.5 M GIcNAc to obtain 
gp 85. Both 72-kD protein and gp 85 protein were then analyzed by either one- 
or two-dimensional SDS PAGE followed by autoradiography. 

One-dimensional Peptide Maps 
Both lymphoma 72-kD protein and the 72-kD proteolytic fragment of eryth- 
rocyte ankyrin (prepared according to a previously described method [1 ]) were 
labeled with 1251 using the iodogen method of Franker and Speck (20). Peptide 
mapping by a limited proteolytic digestion with Staphylococcus aureus V8 
protease (0.05 ug/gel well) of these two ~2~l-labeled proteins in a 15% SDS 
PAGE slab gel was performed according to the procedure described previously 
by Cleveland et at. (17). Gels were subsequently fluorographed, vacuum dried, 
and exposed to Kodak x-ray (X-Omat, Xar-5) film at -70"C. 

~251-WGA Western Blotting and 
Immunoblotting Techniques 
The isolated plasma membranes, 8 S and 16 S complexes, were electrophoresed 
on an exponential polyacrylamide gel gradient (7.0-17.0%) containing SDS as 
described above. The polypeptides were transferred to nitrocellulose sheets as 
described by Burnette (14) for WGA binding and Bennett and Davis (4) for 
anti-ankyrin binding. Subsequently, these sheets were incubated with either 10 
ug/ml t2~I-WGA or 1 ug/mt anti-ankyrin antibodies (e.g., anti-erythrocyte or 
anti-brain ankyrin) followed by incubation with ~25I-protein A. The radioactiv- 
ity was analyzed by previously published autoradiographic procedures (5). 

Immunoprecipitation Procedures 
Isolated lymphoma plasma membranes or Nonidet P-40-insoluble cytoskeleton 
fractions (13) or lymphoma 72-kD protein were solubilized in 10 mM Tris- 
HCI (pH 8.0), 0.6 M NaCI, 0.1 mM dithiothreitol containing 0.5-1.0% Triton 
X-100 for immunoprecipitation. The solubilized membranes, cytoskeleton, 
and 72-kD protein were then iodinated (20), divided into aliquots, and incu- 
bated at 4"C for 30 min with 10 ~g/ml of specillc anti-ankyrin antibodies (i.e., 
anti-erythrocyte or anti-brain ankyrin antibodies) or preimmune serum (as a 
control). After the 30-rain incubation, goat anti-rabbit immunoglobulin (100 
ug/ml) was added to the anti-ankyrin or preimmune serum-treated samples 
and incubated overnight at 4"C to induce immunoprecipitation (12, 13). The 
resulting immunopreeipitates were pelleted by centrifogafion at 700 g,v for 4 
min and washed three times with 0.1% Triton X-100 in 10 mM Tris-HCl (pH 
8.0), 0.6 M NaCI, 0.1 mM dithiothreitol using the same centrifugation condi- 
tions. The immunoprecipitates were subsequently solubilized by SDS, and 
analyzed by SDS PAGE and autoradiography. 

Double-label Immunofluorescence Microscopy 
Ceils were washed with RPMI 1640 medium (GIBCO) and resuspended in the 
same medium. Fluorescein-labeled WGA (50 ttg/ml) was added directly to cell 
suspensions at room temperature for 15 rain to induce patch and cap formation. 
Fluorescein-labeled WGA-labeled cells were fixed with 2% paraformaldehyde 
in 0.1 M phosphate buffer (pH 7.4) at 0*C for 30 min, rendered permeable by 
methanol treatment (15), and then stained with rabbit anti-ankyrin (e.g., anti- 
erythrocyte or anti-brain ankyrin antibodies). These samples were then ineu- 
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bated with rhodamine-conjugated goat antibody against rabbit IgG to visualize 
ankyrin distribution. To detect any nonspecific antibody binding, ceils were 
first incubated with antisera preabsorbed with soluble, native ankyrin to remove 
anti-ankyrin antibodies. These cells were then incubated with rhodamine- 
conjugated goat anti-rabbit IgG. No label was observed in such control samples. 

The fluorescein- and rhodamine-labeled samples were examined with a Zeiss 
photomicroscope using a 63 × oil immersion lens and epi-illumination. Fluo- 
rescein and rhodamine fluorescence were excited with an Osram HBO 50-W 
bulb using the filter combination CZ 487710 and CZ 487714, respectively. 
Cells were photographed with Kodak plus-X film (Eastman Kodak Co., Roch- 
ester, NY). 

Immunoelectron Microscopy 
In this study, the technique developed by Tokuyasu (35, 36) was used with 
some modifications (6, 8, 9, 11). Ceils (1 x l0 T cells/ml) were fixed with 0.2% 
glutaraldehyde in 0.1 M phosphate buffer (pH 7.4) at 4*(2 for 1 h. Fixed ceils 
were rinsed with phosphate buffer and infused with 0.8 M sucrose at room 
temperature for at least 30 rain. Small volumes (5 ul) of sucrose-treated ceils 
were placed on top of copper stubs and immediately frozen in liquid nitrogen. 
Ultra-thin frozen sections (~70-100 nm in thickness) were cut with a chilled 
glass knife on a Sorvall MT-2B ultramicrotome with LTC-2 cryobrowl attach- 
ment (DuPont Co., Wilmington, DE) at a temperature of approximately -70°C. 
Frozen-thin sections were subsequently picked up by a small loop (0.5 mm in 
diameter) containing 2.3 M sucrose and 1% gelatin solution and brought to 
room temperature. 

The thawed thin sections were placed on carbon-stabilized, formvar-coated 
copper grids and incubated with rabbit anti-ankyrin (e.g., anti-crythrocyte or 
anti-brain ankyrin) antibodies (10 ~g/ml) or preabsorbed serum (anti-ankyrin- 
free serum is used as a control), followed by protein A-colloidal gold (17 nm 
in diameter) staining as described previously (31 ). Immunogold-labeled samples 
were further fixed with 2% glutaraldehyde in 0.1 M phosphate buffer (pH 7.4) 
for 30 rain at room temperature, followed by staining with 2% uranyl acetate 
(pH 8.0) for 10 rain and 0.2% uranyl acetate (pH 4.0) for 2 min (36). Finally, 
immunogold-labeled, uranyl acetate-stained thin sections were embedded in a 
thin layer (~70-100 nm thickness) of 1% methyl cellulose and air dried (36). 
Ultra-thin sections were examined on a Phillips 300 transmission electron 
microscope operating at 80 kV. 

Interaction Between Lymphoma 72-kD Protein and 
Spectrin or Fodrin 
A Spectrin-binding AssaJ, with Spectrin-depleted Inside-out Vesicles. Erythro- 
cyte ghost membranes from freshly drawn blood were prepared according to 
previously published procedures (9). Spectrin-depleted inverted (inside-out) 
vesicles were obtained by incubating erthrocyte ghosts in 0.3 mM sodium 
phosphate (pH 7.5) for 30 rain at 37"C, followed by centrifugation at 42,000 
g.v for 40 min (3). The membrane pellet was then resnspended to a protein 
concentration of 1 mg/ml in 20 mM KCI, 2 mM sodium phosphate (pH 7.6). 

Erythrocyte spectrin was isolated from human erythrocyte ghosts as outlined 
by Ungewickell and Gratzer (37) with the following modifications. Ghost 
membranes were dialyzed against 200 vol of 0.3 mM sodium phosphate (pH 
7.6) for 22 h at 4"C to remove spectrin from the membranes. After dialysis, the 
ghosts were pelleted by centrifugation at 80,000 g,v for 1 h, and the supernatant 
applied to a Sepharose I000 column (90 × 2.5 cm) equilibrated with 25 mM 
Tris (pH 7.6), 5 mM EDTA, 0.1 M NaC1. The column was eluted with the 
same buffer and 8-ml fractions were collected. Protein in the fractions was 
monitored by absorbance at 280 nm and protein composition determined by 
SDS PAGE analysis on aliquots. The fractions enriched with spectrin were then 
labeled with ~251 by the iodogen method (20). Spectrin was then further purified 
by centrifugation at 100,000 gov for 22 h on a 5-20% sucrose gradient containing 
the same buffer. Fractions were monitored by absorbance at 280 nm and purity 
of spectrin determined by SDS PAGE. The fractions containing pure spectrin 
were then dialyzed against 100 mM NaC1, 25 mM Tris-HCl (pH 7.6), 5 mM 
EDTA. The specific activity of the iodinated spectrin was 8.5 x l0 s cpm/#g. 

Binding studies were performed using the procedure of Bennett (I). Inverted 
(inside-out) vesicles (120 t~g/ml) were incubated with t25I-spectrin in binding 
buffer (20 mM KCI, 2 mM sodium phosphate [pH 7.5], 0.5 mM MgCI2, 0.4 
mM dithiothreitol, and 4% sucrose) for 90 min at 4"C in a final vol of 225 ~1. 
This material was then layered over 250 #1 0f20% sucrose in 0.7 mM sodium 
phosphate (pH 7.6), 20 mM KCI buffer, and centrifuged for 20 rain at 20,000 
g,~. The pellets were counted on a LKB miniGamma counter for radioactivity 
determination. 

Binding studies in the presence oflymphoma 72-kD protein were performed 
in an identical way as outlined above except that 6 ~g/ml of t25I-spectrin was 
preincubated with varying concentrations (0.5-8.0 #g/ml) of 72-kD protein for 

30 rain before the addition of spectrin-depleted inside-out erythrocyte mem- 
branes. Parallel experiments using erythrocyte 72-kD proteolytic fragment of 
ankyrin and a nonspecific protein, bovine serum albumin (BSA), were run as 
internal controls. 

Fodrin or Spectrin Binding to Lymphorna Proteins. Lymphoma proteins 
(e.g., the 72-kD protein, gp 85, and 16 S 72 kD/gp 85 complex) and BSA were 
caeh conjugated to CNBr-aetivated Sepharose beads (Pharmacia Fine Chemi- 
cals). During binding assays, ~25I-labeled fodrin or speetrin (I 1,000 epm) was 
added to the protein-conjugatad Sepharose beads in the presence of binding 
buffer (20 mM KCI, 2 mM sodium phosphate [pH 7.5], 0.5 mM MgCI2, 0.4 
mM dithiothreitol, and 4% sucrose) for 90 min at room temperature. The 
Sepbarose beads were then centrifuged at 200 gov for 2 min at room temperature 
and washed at least three times with the same buffer. The radioactivity associ- 
ated with the 72-kD protein, gp 85, 16 S, or BSA-conjugated Sepharose beads 
was determined by counting the samples on an LKB miniGamma counter. 
Relative fodrin or spectrin binding activity was calculated by the ratio of 
relative amount of spectrin bound (cpm) vs. relative amount of protein (~g) 
conjugated to the Sepharose beads. 

Results 

Isolation of  a Lymphoma Membrane-bound 72-kD 
Protein and gp 85 Complex 

A great deal of effort has been made during the last several 
years to determine the linkages that may exist between mem- 
brane glycoproteins and the cytoskeleton in mouse T-lym- 
phoma cells (6, 7, 10, 12, 13). In this study we have used a 
WGA column followed by sucrose gradient centrifugation to 
selectively isolate certain lymphoma glycoproteins and their 
associated cytoskeletal molecules. Our results indicate that a 
number of ~2SI-labeled surface proteins bind to a WGA- 
Sepharose column and can be specifically eluted by GIcNAc 
(data not shown). 

Sucrose gradient centrifugation analysis of this WGA-bind- 
ing material reveals two distinct peaks with sedimentation 
coefficients of 16 S (A peak) and 8 S (B peak), respectively 
(Fig. 1). SDS PAGE and autoradiographic patterns indicate 
that the 8 S material contains a large number of surface ~25I- 
labeled polypeptides and WGA-binding proteins (Fig. 1 B, 
lanes a-c). An 85-kD protein, designated gp 85, appears to be 
one of the major surface ~25I-labeled and WGA-binding pro- 
teins. The 16 S peak consists of only two major polypeptides, 
gp 85 and 72 kD (Fig. 1A, lane a). The gp 85, but not the 72- 
kD protein, is ~25I-labeled (Fig. 1 A, lanes a-c) and binds WGA 
(Fig. 1 A, lane c). Based upon the evidence that (a) the 72-kD 
protein and gp 85 both bind to a WGA-Sepharose column; 
(b) these two proteins can be co-eluted from the WGA- 
Sepharose column by GIcNAc; and (c) both 72-kD protein 
and gp 85 co-sediment as a single 16 S peak, we believe that 
the 72-kD protein is tightly associated with gp 85 in a mem- 
brane-associated complex. Since high salt treatment has been 
used routinely to dissociate membrane-bound proteins such 
as spectrin or fodrin from the erythrocyte band 3-ankyrin 
complex (2) or lymphoma GP 180 (32), we decided to ex- 
amine the effect of high salt on the 72-kD/gp 85 complex. 
Our results indicate that there is no detectable change in the 
S value of the complex in the presence of high salt (0.6 M 
NaCI) as compared to the no salt condition (Fig. 2A). This 
16 S material (either in the presence or in the absence of high 
salt) was subsequently passed over a second WGA column 
and eluted with GIcNAc elution (Fig. 2 B). Our results show 
that both the 72-kD protein and gp 85 remain tightly associ- 
ated (Fig. 2C, lanes a and b). Therefore, this two-protein 
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Figure 1. Analysis of ~25I-labeled WGA glycoproteins by sucrose gradient centrifugation. 125I-labeled WGA-binding proteins were loaded onto 
a linear sucrose gradient (7-28%) with a 0.5-ml cushion of 65% sucrose and centrifuged at 70,000 g,v for 22 h. Thirty-four 0.5-ml fractions 
were collected from the bottom of each tube. Fractions were counted on an LKB MiniGamma counter to determine the distribution of surface 
t25I-labeled protein within the gradient. Protein standards of G-aetin (3.7 S) and tetrameric spectrin or fodrin (11 S) were used to estimate the 
S value of the t25I-labeled peaks, 16 S and 8 S, respectively. SDS PAGE analysis of the pooled 125I-labeled 16 S (A) and 8 S (B) peak fractions 
with (lanes a) Coomassie Blue or silver staining. Autoradiograms of (lanes b) t25I-labeled surface iodination pattern and (lanes c) ~2~I-WGA 
Western blot pattern. (Both gp85 and the 72-kD protein are the two major components in the 16 S peak.) 

complex appears to be resistant to high salt treatment. How- 
ever, the 72-kD protein can be effectively dissociated from 
~25I-labeled gp 85 by treatment with 2 M urea (Fig. 2D, lanes 
a and b). 

Identification o f  72-kD Protein As an 
Ankyrin-like Molecule 

Using a specific antibody raised against either erythrocyte or 
brain ankyrin and standard immunoblotting/immunoprecip- 
itation techniques, we have found that lymphoma plasma 
membrane contains at least two ankyrin cross-reactive poly- 
peptides, 215 kD and 72 kD (but not gp 85) (Fig. 3). The 215- 
kD protein (Fig. 3 b) appears to have an identical molecular 
mass to erythrocyte ankyrin (Fig. 3 a). The lymphoma mem- 
brane-associated 72-kD cross-reactive polypeptide (Fig. 3, b 
and c) may be similar to the 72-kD proteolytic fragment of  
erythrocyte ankyrin. 

Using the same anti-ankyrin antibody and colloidal gold- 
conjugated protein A staining on frozen thin sections, we have 
determined that these ankyrin-like molecules are localized 
directly underneath the cytoplasmic side of  the plasma mem- 
brane (Fig. 4a). The immunogold labeling appears to be 
specific since the control samples treated with preabsorbed 

(anti-ankyrin-free) serum followed by colloidal gold-conju- 
gated protein A reagent does not show any significant labeling 
on sections (Fig. 4b). Because the 72-kD protein is readily co- 
isolated with gp 85 and the many possible interactions of  the 
215-kD protein with other cellular protein(s) are unknown, 
we decided to focus on the characterization of the 72-kD 
protein in this study. 

Two-dimensional SDS PAGE analysis indicates that lym- 
phoma 72-kD protein can be resolved as two spots at pI 6.5- 
6.8 (Fig. 5A). The 72-kD proteolytic fragment of  ankyrin 
shows a major band at pI 6.5-6.8 and a minor spot at pI 7.2. 
Although there are some minor differences in the isoelectric 
focusing patterns (two spots vs. a band and a minor spot) 
between these two proteins, this characteristic pI 6.5-6.8 of  
lymphoma 72-kD protein closely resembles that previously 
described for the 72-kD proteolytic fragment of  ankyrin (Fig. 
5 B) (38). In addition, our results from one-dimensional pep- 
tide maps show that there are some detectable similarities and 
differences in mapping patterns between lymphoma 72-kD 
protein and the 72-kD proteolytic fragment of  ankyrin (Fig. 
6B). Nevertheless, patterns of  the major peptide fragments 
obtained from lymphoma 72-kD protein (Fig. 6A) are similar 
to those obtained from erythrocyte 72-kD ankyrin (Fig. 6 B). 
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Figure 2. High salt treatment of the ~25I-labeled 16 S material. (A) Sucrose gradient centrifugation of the ~25I-labeled 16 S material (prepared 
according to the procedures described in Fig. 1) in the presence (A) and absence (ll) of 0.6 M NaC1. (B) WGA-Sepharose column chromatography 
of the '25I-labeled 16 S material (with or without 0.6 M NaCI treatment) which was bound to a WGA-Sepharose column and eluted with 0.5 
M GIcNAc. (C) SDS PAGE analysis of GlcNAc eluted WGA-Sepharose column-bound proteins (B) stained with Coomassie Blue or silver 
(lane a, with 0.6 NaC1 treatment; lane b, without 0.6 NaC1 treatment). (D) SDS PAGE and autoradiogram of WGA-Sepharose column-bound 
proteins eluted first by 2 M urea (lanes b, Coomassie Blue or silver staining) and then by GlcNAc (lane a, autoradiogram). 

Figure 3. Immunoblotting and immunoprecipitation of lymphoma 
ankyrin-like molecules. Immunoblot autoradiograms of erythrocyte 
ghost membranes (a) and lymphoma plasma membranes (b) incu- 
bated with rabbit anti-erythrocyte ankyrin antibody followed by J2sI- 

Since these two proteins are isolated from two different cell 
types, namely, mouse lymphomas and human erythrocytes, 
some variations in their two-dimensional gel patterns and 
peptide maps are expected. Given these data, we consider the 
72-kD proteins to be lymphoma-specific forms of  ankyfin. 

The Involvement o f  Lymphoma  72-kD Protein 
Ankyrin-l ike Protein in Receptor Capping 

A double label immunofluorescence study revealed that these 
ankyrin-like proteins (Fig. 7A) are accumulated preferentially 
beneath receptor cap structures (Fig. 7 B). Biochemical anal- 
yses indicate that the amount of  72-kD protein (Fig. 7, lanes 
a and c) associated with a fodrin/actin-containing cytoskel- 
eton complex (insoluble material from a mild Nonidet P-40 
extraction) is significantly increased (Fig. 7, b and d) during 
fig,and (e.g., anti-Thy-1, anti-T-200, anti-GP 69/71, concan- 
avalin A, and polycationized ferritin)-induced capping (Table 
I). These data suggest that the ankyrin-like 72-kD protein 
may be interacting with a fodrin/actin complex on the inside 
surface of  mouse lymphoma plasma membranes. 

protein A. Immunoprecipitation autoradiogram of IzSI-labeled lym- 
phoma 72-kD protein with rabbit anti-erythrocyte ankyrin followed 
by goat anti-rabbit immunoglobulin (c). Similar results were obtained 
with anti-brain ankyrin antibody reagents (data not shown). 
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Figure 4. lmmunoelectron microscopic localization of ankyrin-like 
molecules associated with lymphoma plasma membranes. Frozen 
thin sections of lymphoma cells were labeled with rabbit anti-eryth- 
rocyte or brain ankyrin followed by protein A-conjugated colloidal 
gold complex (a). As a control, frozen sections were labeled with 
preabsorbed serum (anti-ankyrin-free serum) followed by protein A- 
conjugated colloidal gold complex (b). Bar, O. 1 ~m. 

Figure 5. Two-dimensional SDS PAGE analysis of lymphoma 72-kD 
protein and the erythrocyte 72-kD proteolytic fragment of ankyrin. 
Coomassie Blue staining ofisoelectric focusing (IEF) and SDS PAGE 
(SDS) analysis of lymphoma 72-kD protein (A) and erythrocyte 72- 
kD fragments of ankyrin (B). First dimension, isoelectric focusing gel 
with a pH gradient from pH 3.5 to pH 8.5. Second dimension, a 10% 
polyacrylamide gel that contains SDS. 

Figure 6. One-dimensional peptide maps 
of iymphoma 72-kD proteins and the 
erythrocyte 72-kD proteolytic fragment of 
ankyrin. Autoradiogram of peptide maps 
of t2SI-labeled lymphoma 72-kD (A) and 
erythrocyte 72-kD proteolytic fragment of 
ankyrin (B) processed through a limited 
proteolytic digest with S. aureus V8 pro- 
tease (0.05 tzg/gel well) in a 15% SDS 
polyacrylamide slab gel. 

Interaction between the Lymphoma 72-kD Protein 
and Spectrin or Fodrin 

To determine whether there is a direct interaction between 
the lymphoma 72-kD protein and fodrin or spectrin, we have 
performed the following two different binding experiments, 
Both the erythrocyte ankyrin and the 72-kD proteolytic frag- 
ment of  ankyrin containing the spectrin-binding domain (l) 
have been used as an effective competitor for spectrin-binding 
to spectrin-depleted, inverted (inside-out) erythrocyte ghosts 
(3). In this study, we have investigated the ability of  the 
lymphoma 72-kD protein to compete with erythrocyte spec- 
trin-depleted, inside-out vesicles for spectrin binding using a 
spectrin/inside-out vesicle binding assay. 

First, the binding pattern of  t2SI-labeled spectrin to the 
spectrin-depleted inside-out vesicle preparation was found to 
occur in a concentration-dependent manner (Fig. 8A). This 
binding curve is similar to that obtained by Bennett (l) for 
32p-labeled erythrocyte spectrin binding to inverted erythro- 
cyte vesicles, indicating that the iodination of  spectrin under 
our experimental conditions does not interfere with its ability 
to bind to spectrin-depleted inside-out vesicles. The binding 
of tzSI-spectrin to spectrin-depleted inside-out vesicles is in- 
hibited by lymphoma 72-kD protein and the 72-kD fragment 
of  ankyrin (but not BSA) in a concentration-dependent man- 
ner (Fig. 8 B). Under our assay conditions, ery-throcyte 72,000- 
kD fragment of ankyrin (but not BSA) displays a 50% maxi- 
mal inhibition and lymphoma 72-kD protein exhibits a con- 
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Figure 7. Association oflymphoma 72-kD protein with a membrane- 
cytoskeleton complex during lymphocyte capping. Double immuno- 
fluorescence staining oflymphoma cells for localization of cell surface 
WGA receptors (A) and intracellular ankyrin (B). (Similar accumu- 
lation patterns of ankyrin were observed underneath anti-Thy-l-, 
anti-T-200-, and anti-gp 69/7 l-induced capped structures [data not 
shown].) Bar, 13 ~m. Coomassie Blue staining of(lanes a and c) total 
plasma membrane; (lanes b and d) Nonidet P-40-insoluble fraction 
of plasma membranes (i.e., cytoskeleton material) from uncapped 
(lanes a and b) and capped (lanes c and d) cells. 

Table I. The Relative Accumulation of the 72-kD Protein in 
Capped and Uncapped Cells 

Plasma mem- Nonidet P-40-in- 
brane (capped/ soluble cytoskeleton 

Experiments uncapped) (capped/uncapped) 

Uncapped 1,0 1.0 
Anti-T-200-induced cap 1.09 -+ 0.11 1.60 _+ 0.7 
Anti-Thy- 1-induced cap 0.86 -+ 0.17 1.78 + 0.21 
Anti-gp 69/7 l-induced cap 1.13 _+ 0.09 2.16 + 0.13 
WGA- or Con A-induced cap 0.95 _+ 0.04 1.82 _+ 0.28 
Polycationized ferritin-in- 1.16 + 0.12 2.56 + 0.40 

dueed cap 

The values were obtained from scanning densitometry (arbitrary units) of 
Coomassie Blue-stained 72-kD protein in the plasma membrane and Nonidet 
P-40-insoluble (cytoskeleton) fractions similar to the gel lanes in Fig. 8. 

sistent 25 % maximal inhibition during the 12SI-spectrin bind- 
ing to spectrin-depleted inside-out vesicles. Since lymphoma 
72-kD protein and erythrocyte 72-kD fragment of ankyrin 
are derived from different cell types, the minor structural 
differences as indicted by two-dimensional gel and one-di- 
mensional mapping patterns may be responsible for their 
differential inhibitory effects in displacing erythrocyte spectrin 
binding. Our second binding assay involved the addition of 
~SI-labeled fodrin or spectrin to specific proteins (e.g., 72-kD, 
gp 85, 16 S complex, or BSA) that have been conjugated to 
Sepharose beads. Our data show that both fodrin and spectrin 
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Figure 8, A spectrin-binding assay using spectrin-depleted, inside-out 
vesicles. (A) Binding curve for 12Sl-spectrin to spectrin-depleted, in- 
side-out erythrocyte vesicles. (B) Binding of 6 ug/ml ~2SI-spectrin to 
spectrin-depleted, inside-out erythroeyte vesicles with (0) and without 
(1~) preincubation with varying concentrations (0.5-8.0 #g/ml) of 
iymphoma 72-kD protein. The binding of 125I-spectrin was also 
measured in the presence of various concentrations of either the 72- 
kD fragment of ankyrin (O) or a nonspecific protein, BSA (1~). 

display a preferential binding with the lymphoma 72-kD 
protein as compared to the 16 S complex or gp 85 alone (Fig. 
9). We believe that the level of fodrin and spectrin binding to 
the 72-kD protein is significant, since there is only a minimal 
amount of nonspecific spectrin or fodrin binding to BSA- 
conjugated Sepharose beads (Fig. 9). 

Since the lymphoma 72-kD protein shares several structural 
and functional similarities with the 72-kD proteolytic frag- 
ment of ankyrin, it seems reasonable to suggest that this 
molecule may be an ankyrin-like protein involved in the 
linkage between receptor molecule(s) and the cytoskeletal 
components in mouse T-lymphoma cells. 

Discussion 

Although interactions between membrane receptors and the 
cytoskeleton have been proposed to play an important role in 
lymphocyte receptor clustering and aggregation (so-called 
patching and capping), the molecular details concerning this 
transmembrane linkage are still very unclear at this time. 
Since analogs of proteins in the erythrocyte membrane-cy- 
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toskeleton complex (i.e., spectrin, ankyrin, and band 3) have 
been identified in lymphocytes (7, 13, 18, 26, 28), we have 
sought to draw further functional analogies between the lym- 
phocyte and erythrocyte membrane-cytoskeleton systems. 
The determination of common components and similar trans- 
membrane interactions in both erythrocytes and lymphocytes 
should provide useful insights into how these molecules may 
function in the regulation of lymphocyte receptor movement. 

In erythrocytes, the interaction of spectrin (a major cyto- 
skeletal actin-binding protein) with the inner surface of the 
erythrocyte membrane is thought to be responsible for the 
maintenance of erythrocyte membrane architecture as well as 
cell shape (16, 19, 24, 27, 34). Spectrin-like proteins, referred 
to as fodrin (displaying one subunit of 240-kD and a second 
subunit of 235 kD) have recently been isolated and identified 
in a number of non-erythroid cells including lymphocytes 
(13, 26, 28). Both biochemical and cytochemical data indicate 
that when lymphocytes are induced to patch and cap, there is 
a preferential accumulation of fodrin molecules in the mem- 
brane-associated cytoskeleton (13) and receptor cap structures 
(13, 26, 28). Therefore, the participation of fodrin in linking 
membrane components to actin-filaments is strongly impli- 
cated (7, 13). 

One of the linker molecules bridging spectrin and erythro- 
cyte membrane components has been identified as ankyrin 
(4). Analyses from limited proteolytic digest experiments of 
the intact 215-kD ankyrin molecule indicate that (a) the 55- 
72-kD fragments of this protein contain the spectrin-binding 
domain (1, 39, 40), and (b) the 82/83-kD fragment contains 
the binding site for the membrane protein, band 3 (39, 40), 
Ankyrin-like molecules have been reported in a number of 
non-erythroid cell types including lymphocytes (4, 7). How- 
ever, biochemical identification and characterization of this 
ankyrin-like protein has not been successfully performed in 
lymphocytes. 

In this study, we have isolated a 16 S protein complex 
containing a membrane glycoprotein and an associated 72- 
kD protein. The stoichiometry for these two proteins appears 
to be in a 1:1 molar ratio (Figs. 1 and 2). The association 
between gp 85 and the 72-kD protein is rather stable based 
on the following evidence: (a) the two proteins can be co- 
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Figure 9. Direct binding of fodrin 
or spectrin to lymphoma proteins. 
~25I-fodrin or spectrin was added to 
lymphoma protein (e.g., 72-kD 
protein, gp 85, or 16 S)-conjugated 
Scpharosc beads. The Scpharosc 
beads were centrifuged at 200 go, 
for 2 rain at room temperature. 
The radioactivity associated with 
the 72-kD protein-, gp 85-, 16 S--, 
and BSA- (as a control) conju- 
gated beads was determined by 
counting on a LKB mini-Gamma 
counter. The relative fodrin (It) or 
spectrin (m) binding activity was 
calculated by the ratio of relative 
amount of fodrin or speetrin 
bound (clam) vs. relative amount 
of protein (ug) conjugated to the 
Sepharose beads. 

isolated on a WGA column and co-eluted with GlcNAc (Fig. 
2, B and C); (b) they can be co-sedimented as a single peak 
with a sedimentation coefficient of 16 S by sucrose gradient 
centrifugation (Figs. 1 and 2); and (c) these two molecules can 
not be separated in the presence of high salt but are dissociated 
after exposure to 2 M urea (Fig. 2). The tight association 
between lymphoma gp 85 and 72 kD protein (especially their 
co-isolation and resistance to high salt treatment) are analo- 
gous to that of the band 3-ankyrin complex in erythrocytes 
(2). Whether lymphoma gp 85 is an erythrocyte band 3-like 
protein remains to be determined. 

Using anti-ankyrin antibody, we have found that there are 
two distinct cross-reactive forms of ankyrin in lymphoma 
membranes; namely, a 72-kD protein and a 215-kD protein 
(Fig. 4). Whether the 72-kD protein is a proteolytic fragment 
of a 215-kD ankyrin-like protein or a new class of non- 
erythrocyte ankyrin-like molecules is not clear at this time. 
Since our membrane extraction and 72-kD protein isolation 
procedures both use a variety of protease inhibitors, we feel it 
is unlikely that the 72-kD protein is a proteolytic fragment of 
the 215-kD protein. The fact that the 72-kD protein is pref- 
erentially isolated with the gp 85 membrane protein in a 
stable complex, and also displays a number of structural and 
functional similaries to erythrocyte ankyrin, implies that the 
72-kD protein may be an essential part of transmembrane 
linkages in mouse T-lymphoma ceils. Immunoelectron mi- 
croscopy and immunofluorescence observations show clearly 
that these ankyrin-like molecules are located at the inner 
surface or cytoplasmic side of the plasma membrane and are 
co-aggregated with receptor cap structures (Figs. 4 and 7). 
These cytochemical results provide strong evidence for close 
interactions occurring between ankyrin-like molecules and 
the plasma membrane in intact lymphoma cells. 

The two-dimensional PAGE and one-dimensional peptide 
mapping analyses indicate that the lymphoma 72-kD protein 
shares a great deal of structural homology (only minor differ- 
ences) with the 72-kD proteolytic fragment of erythrocyte 
ankyrin. Most importantly, the results of two independent 
spectin-binding assays show that the lymphoma 72-kD pro- 
tein has specific binding affinity for spectrin and fodrin mol- 
ecules (Figs. 8 and 9). This spectrin-binding property is one 
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of the best known characteristics of the 72-kD proteolytic 
fragment of erythrocyte ankyrin (1). The fact that the amount 
of 72-kD protein associated with fodrin/actin-containing cy- 
toskeletal material is proportionally increased during various 
ligand-induced capping (Fig. 7, and Table I) further suggests 
that a close interaction occurs between the 72-kD protein and 
cytoskeletal components in lymphoma membranes. Based on 
the aforementioned structural and functional similarities be- 
tween the lymphoma 72-kD protein and the erythrocyte 72- 
kD proteolytic fragment of ankyrin, we propose that the 
lymphoma 72-kD protein functions analogously to erythro- 
cyte ankyrin. Erythrocyte 72-kD ankyrin fragment has been 
shown to contain a spectrin-binding site but contains no 
membrane protein-binding region (1). In this respect, the 
lymphoma 72-kD protein is different from the erythrocyte 
72-kD proteolytic fragment of ankyrin since the lymphoma 
72-kD protein is found tightly linked to the membrane pro- 
tein, gp 85. The question of whether the 72-kD protein is also 
capable of linking other membrane proteins awaits further 
investigation. 

Our recent data indicates that a transmembrane glycopro- 
tein, gp 180, is associated with fodrin (in a 1: I molar ratio) as 
a complex with a sedimentation coefficient of - 2 0  S (13). 
Although an ankyrin-like protein has not been identified in 
the gp 180-fodrin complex, it is possible that gp 180 either 
contains an ankyrin-like domain or interacts with a small 
fraction of the 72-kD-gp 85 complex or 72-kD proteins alone 
which then provides for subsequent linkage between gp 180 
and fodrin. 

Preliminary data in our laboratory show that the mem- 
brane-associated 72-kD protein is also present in human B 
lymphoblasts and blood platelets. Therefore, the functional 
and physiological significance for this protein in transmem- 
brane interactions is highly implicated. 

In conclusion, we believe that the isolation and characteri- 
zation of the lymphoma 72-kD, ankyrin-like protein offers an 
excellent opportunity to further our understanding of the 
molecular and functional organization of non-erythrocyte 
membranes. Furthermore, we believe that the linkage of 
lymphoma 72-kD protein with gp 85 and with the spectrin- 
like protein, fodrin (which, in turn, binds to actin filaments), 
may represent an important regulatory transmembrane com- 
plex required for lymphocyte receptor capping. 
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