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Abstract. We report the complete sequence of the
microtubule-associated protein MAPIB, deduced from
a series of overlapping genomic and cDNA clones.
The encoded protein has a predicted molecular mass
of 255,534 D and contains two unusual sequences.
The first is a highly basic region that includes multiple
copies of a short motif of the form KKEE or KKE},
that are repeated, but not at exact intervals. The sec-
ond is a set of 12 imperfect repeats, each of 15 amino
acids and each spaced by two amino acids. Subcloned
fragments spanning these two distinctive regions were
expressed as labeled polypeptides by translation in a
cell-free system in vitro. These polypeptides were
tested for their ability to copurify with unlabeled brain
microtubules through successive cycles of polymeriza-

tion and depolymerization. The peptide corresponding
to the region containing the KKEE and KKE!, motifs
cycled with brain microtubules, whereas the peptide
corresponding to the set of 12 imperfect repeats did
not. To define the microtubule binding domain in vivo,
full-length and deletion constructs encoding MAPIB
were assembled and introduced into cultured cells by
transfection. The expression of transfected polypep-
tides was monitored by indirect inmunofluorescence
using anti-MAPIB-specific antisera. These experi-
ments showed that the basic region containing the
KKEE and KKE}, motifs is responsible for the interac-
tion between MAPIB and microtubules in vivo. This
region bears no sequence relationship to the microtu-
bule binding domains of kinesin, MAP2, or tau.

ICROTUBULES prepared in vitro by successive cy-
M cles of assembly and disassembly consist largely

of o- and B-tubulin, together with a number of
other proteins that are collectively defined as microtubule-
associated proteins (MAPs)! (for reviews, see 32, 35, 52).
Because neuronal cells are rich in microtubules, the best
characterized MAPs are those from brain. Conventionally,
these MAPs have been classified according to their molecu-
lar mass: the high molecular mass MAPs, MAPIA, MAPIB,
MAPIC, and MAP2 (in the range 200-350 kD), and the low
molecular mass MAPs, or tau proteins, a heterogeneous
group of proteins in the range 35-40 kD (51). MAP3 and
MAP4 are less abundant than these; MAP3 is primarily ex-
pressed in astroglia and some neurons (21), while MAP4 is
expressed in glia, vascular, and some other tissues (37). With
the exception of MAPIC, which has been identified as cyto-
plasmic dynein (38, 49) the function of brain MAPs is essen-
tially unknown, though many have been shown to promote
microtubule assembly upon addition to purified tubulin in
VItro.

Among the high molecular mass MAPs, MAPIB (7)
(which is referred to variously as MAPL.2 [16], MAPI(X)
[9],and MAPS5 [40]) differs from the others in its high abun-
dance, its prominence both in association with microtubules

1. Abbreviation used in this paper: MAP, microtubule-associated protein.
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and in soluble form, and the relative inefficiency with which
it cycles with tubulin, particularly during the first cycle.
Nonetheless, MAPIB is generally regarded as an authentic
MAP because it does cocycle with purified tubulin and pro-
mote microtubule assembly in vitro (40) and because an-
tisera specific for MAPIB (both polyclonal and monoclonal)
identify characteristic microtubule networks in neuronal
(and other) cells (6, 12). MAPIB is expressed in the axons
and dendrites of neurons, as well as in glia and other cells.
Because it is especially prominent in axons during their ini-
tial outgrowth (40, 43), it has been suggested that MAPIB
plays a role in neurogenesis.

Several years ago, we isolated a set of cDNA clones encod-
ing a portion of a MAPI subspecies (28). Subsequently, an
antiserum (3d2) raised against a fusion protein derived from
one of these clones was shown to uniquely recognize MAPIB
on Western blots of brain microtubules and of total protein
from PC12 cells (1). The same antiserum also gives a staining
pattern identical to that of other anti-MAPIB antisera on
brain sections (A. Matus and N. J. Cowan, unpublished ob-
servations), thereby proving that our original set of cDNA
clones were derived from MAPIB mRNAs. We have now ob-
tained two genomic clones and further overlapping cDNA
clones that together encode the entirety of MAPIB. Here we
report the complete sequence of MAPIB, deduced from these
clones. The encoded protein has a molecular mass of 255,
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534 D and contains two unusual sequences. One is a set of
12 imperfect repeats that do not occur in any other sequenced
protein, each 15 amino acids long, and spaced by 2 amino
acids. The other is a highly basic region with many copies
of the sequence KKEE and KKE;,, repeated but not at fixed
intervals. We show that it is this latter region which is respon-
sible for the binding of MAPIB to microtubules both in vitro
and in vivo.

Materials and Methods

¢DNA and Genomic Clones

cDNA from 5-d-old mouse brain mRNA was prepared as described (26),
except that half was ligated to Eco RI linkers (Boehringer Mannheim Bio-
chemicals, Inc., Indianapolis, IN) and half to Xba I linkers, and each por-
tion cloned into the vector AGem (Promega Biotec, Madison, WI). The
resulting libraries were screened (4) as described in the text, using purified
cDNA restriction fragments >?P-labeled by nick translation (41). Hybridiz-
ing clones were subcloned into pUC, restriction-mapped, and, in some
cases, sequenced. Sequencing of the complete set of overlapping clones on
both strands was accomplished by subcloning bal3l-generated fragments
(27) into M13, and using the dideoxy chain terminator method (42). Four
overlapping genomic clones containing the 5' end of the MAPIB gene were
obtained by screening a mouse genomic library in the EMBL4 vector,
kindly provided by P. D"Eustachio (New York Medical Center). The cosmid
clone C (Fig. 1), including the 6-kb MAPIB exon, was isolated by screening
a library (provided by S. Tonegawa, Massachusetts Institute of Technology)
with clone 141A (Fig. 1).

Constructs for Translation, Fusion Proteins, and
Transfection Experiments

Two constructs encompassing repeated sequences were made for in vitro
transcription, translation, and cycling experiments as follows: (a) clone 72
was digested with Xho I, blunt-ended with the Klenow fragment of DNA
polymerase 1, cut with Bgl II, and the coding fragment (Fig. 1, 5’ arrow)
cloned into the transcription vector pGEM3 (Promega Biotec) cut with Hinc
II and Bam HI; (b) clone 141A was digested with Pst I and Eco RI, and the
purified fragment (Fig. 1, 3’ arrow) cloned into pGEM3 cut with the same
restriction enzymes. For both constructs, an in-frame translational start sig-
nal was provided by the pGEM vector. The insert from the first of these
pGem clones, including the initiator AUG, was cloned into a pSV vector (34)
for expression in cultured cells (Fig. 1, construct X). In addition, constructs
were made from the 5’ and 3’ end of the set of MAPIB ¢cDNAs to place the
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translational start and stop signals: (a) the insert from clone 12X was sub-
cloned into the Xba I site of pGEMI; and (b} the Sac I/Eco RI fragment
was cloned into pGEM3 cut with Acc I, blunt ended with Klenow and then
digested with Eco RI; this procedure supplied an AUG codon for transla-
tional initiation in frame with the MAPIB coding sequence.

The full coding sequence of MAPIB was assembled, first by joining
clones 12X and IR at an internal Pfim I site, then by digesting the resulting
construct with Xho I and Eco RI, and finally by adding both the Xho I/Ssp
1 fragment from cosmid clone C and the Ssp I/Eco RI fragment from clone
166 in a three-way ligation. The clones and cloning sites are depicted in Fig.
1. The full cloning region was subcloned into a pSV vector using a unique
Sal I site in the 5' flanking pUC polylinker, and a unique Dra I site in the
3' untranslated region. Deleted versions were obtained by (a) joining a Msc
I site to a Pvu I site blunt ended with T4 DNA polymerase (Fig. 1, 1B-H);
(b) deleting an ~1-kb Msc I fragment by self-ligating a gel purified fragment
from a partial Msc I digest (Fig. 1, IB-K); and (c) by joining the Xho I and
Bg I sites, by blunt ending each with the Kienow fragment of DNA poly-
merase I (Fig. 1, 1B-X).

To raise an antiserum specific for the second set of repeats, a Pst I/Eco
RI fragment (Fig. 1, 3 arrow) from clone 141A was subcloned into a pATH
vector (29) that was used to express a fusion protein whose amino terminal
part is Escherichia coli TrpE, and whose carboxyterminal part is derived
from MAPIB. Fusion protein excised from SDS polyacrylamide gels was
used to immunize rabbits. The resulting serum is called YXY; its specificity
is demonstrated in Fig. 7.

Transcription, Translation, and Microtubule
Cycling Experiments

pGEM subclones were linearized at the 3’ end and transcribed in vitro using
SP6 polymerase as described (33). The capped mRNAs were translated in
rabbit reticulocyte lysate (Promega Biotec) supplemented with either
[**S]methionine or [*H]lysine. Translation products were resolved on SDS
polyacrylamide gels, which were fluorographed, dried, and exposed to film.
Microtubule cycling experiments were performed as described (30).

Hybrid Selection and Primer Extension

Clone 5X (Fig. 1) was used to select MAPIB-specific mRNA from total
mouse brain RNA (100ugm/2.1-cm nitrocellulose filter) by methods de-
scribed previously (17). The selected RNA was used in a primer extension
reaction containing an antisense oligonucleotide, SCCTGAGAGAAGT-
GTTCCT?3' (corresponding to nucleotides 17-34 of the sequence shown in
Fig. 4), 32P-end labeled with polynucleotide kinase. Reaction conditions
and analysis of the extended product were as described (3).

Transfection Experiments and Immunofluorescence
Hela cells were grown in DME supplemented with 5% FCS (Hyclone

] Figure 1. MAPIB clones and con-
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dicate fragments subcloned for in
vitro cycling experiments, and for
the generation of antisera 3d2
(1) and YXY (see Materials and
Methods). Thin lines show the ex-

tent of cDNA and genomic clones which span the coding region of MAPIB. Clones with names ending in X came from an Xba I-linkered
cDNA library, while those with names ending in R came from an Eco RI-linkered cDNA library (sec Materials and Methods). Other
clones have been previously described (28). Deletion constructs created for transfection experiments are indicated by heavy lines, and the
results of these experiments are shown at the right: -+, microtubule binding; —, no microtubule binding.
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Laboratories, Logan UT) in a 10% CO, atmosphere; 3T3 cells were grown
under the same conditions, except 10% FCS was used. Cells growing on
glass coverslips were transfected with DNA by the procedure of Chen and
Okayama (10, and after 72 h fixed in one of three ways: (a) with parafor-
maldehyde (36); (b) with cold methanol for 6 min; or (¢} with cold methanol
following detergent extraction with 0.2% Triton X-100 in a microtubule
stabilizing buffer (47). Immunofluorescence was performed using one of the
two rabbit anti-MAPIB antisera, 3d2 (I) or YXY (this paper). The regions
of MAPIB to which these sera bind are shown in Fig. 1. A mouse anti-a-
tubulin monoclonal antibody (Amersham Corp., Arlington Heights, IL)
was used for double labeling; FITC-conjugated goat anti-rabbit and rhoda-
mine conjugated goat anti-mouse second antibodies were from Boehringer
Mannheim Biochemicals. All antibodies were used at a dilution of 1:500.

Results and Discussion

Isolation of Clones Encoding MAFPIB

With a view to elucidating the structural and functional do-
mains of MAPIB and its relationship to other MAPs, we first
sequenced our original set of overlapping MAPIB-encoding
¢DNA clones. This analysis showed that the set of clones
contains a long open reading frame of 5.4 kb, extending from
the 5’ end of the overlapping set to a location 1.5 kb from the
3’ end. Because this open reading frame encodes a polypep-
tide of at most ~198,000 D, we extended our collection of
overlapping cloned cDNAs in the 5 direction by further
“walking” experiments. To facilitate the search for overlap-
ping clones, we constructed two mouse brain libraries using
different linkers for cloning. These were first screened with
a small fragment from the 5 end of our 5’ most overlapped
¢DNAs (clone 72; reference 28), and twice more, each time
with fragments obtained from the new set of clones. Repre-
sentative examples from the complete set of overlapped
c¢DNA clones are depicted in Fig. 1.

1 2 3 45
92 —
66 — _— —
45—
31—

Figure 2. Determining the placement of the start and stop codons
within the MAPIB transcript. Fragments from the 5’ and 3’ end of
our MAPIB cDNA set were cloned into transcription vectors;
capped RNA was synthesized and translated in a cell free system
containing [**S]methionine (see Materials and Methods). The
resulting labeled transiation products were resolved on an 8.5%
SDS polyacrylamide gel. Lane I, no RNA control; lane 2, RNA
from clone 12X (nucleotides 1-1,574); lane 3, RNA from clone 137,
linearized with Eco RI (Fig. 4, nucleotide 6,304-3’ end of clone);
lane 4, RNA from clone 137 linearized with Kpn I (Fig. 4, nucleo-
tides 6,303-7,333); lane 5, RNA from clone 137 linearized with
Nae I (Fig. 4, nucleotides 6,303-7,454). In lanes 3-5, the slowest
migrating species results from initiation at an AUG triplet provided
by the vector (see Materials and Methods), whereas the second
prominent band presumably results from initiation at an internal
AUG codon.
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Figure 3. The MAPIB transcriptional
initiation site lies 35 nucleotides up-
stream from sequences represented by
overlapping cloned cDNAs. A synthetic
antisense oligonucleotide corresponding
to nucleotides 17-34 of the sequence
shown in Fig. 4 was end-labeled with
polynucleotide kinase and used in a
primer extension reaction with RNA hy-
brid selected with clone 5X (Fig. 1) (see

. Materials and Methods). The reaction

' products were analyzed on a 6% poly-
acrylamide sequencing gel. Lane I/,
selected RNA; lane 2, control (E. coli
tRNA); lane 3, molecular size markers
(shown, in nucleotides, right).

All attempts to extend this cloned set further in the §' direc-
tion resulted in the isolation of numerous unrelated and
nonoverlapping sequences that were presumed to be cloning
artifacts generated by the unavoidable adventitious ligation
of unrelated cDNA sequences during construction of the
c¢DNA library, or by “hairpinning” of cDNA generated dur-
ing the synthesis of the second strand. Sequence analysis of
the overlapping 5’ cDNA clones extended the long open read-
ing frame to 7.5 kb. However, because this open reading
frame extended to the extreme 5’ end of our overlapped
cDNAs, we cannot be certain whether the first AUG triplet
indeed encodes the initiator methionine residue; it is possi-
ble that further upstream sequences encoding additional
aminoterminal MAPIB residues might be unrepresented in
our ¢cDNA libraries. However, we did three further experi-
ments which strongly suggest that translation of MAPIB
does begin at the first AUG triplet found in our cDNA
clones. Firstly, a fragment extending from the extreme 5’ end
of the overlapped cDNAs (Fig. 1) was cloned into a vector
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Figure 4. Complete sequence of MAPIB. The nucleotide sequence of our set of overlapping cDNA clones is shown together with the encoded
amino acid sequence, in the one letter code. (The sequence of 1.4 kb of 3’ untranslated region is not shown, but the entire sequence has
been submitted to GenBank.) A repeated basic motif encoded toward the 5’ end is underlined; a second set of repeats near the 3’ end is
indicated with dashed underlines. Possible phosphorylation sites for casein kinase II are indicated in two ways: predicted () and strongly

predicted (A) (see text).

designed for in vitro transcription. Capped mRNA synthe-
sized from this construct was translated in a cell-free system
containing [**S]methionine, and the reaction products were
analyzed by SDS-PAGE. The data from this experiment (Fig.
2) show an abundant translation product whose molecular
size is consistent with initiation at the first AUG within the
long open reading frame. Therefore, the 5' proximal AUG
functions as an efficient translational initiator in vitro. The
same AUG is also capable of efficient translational initiation
in vivo (see below). Secondly, to examine the possible exis-
tence of MAPiB-encoding aminoterminal sequences up-
stream from the region covered by our overlapping cDNAs,
we isolated a corresponding cloned genomic fragment by
screening a mouse genomic library with a MAPIB cDNA
probe. An antisense synthetic oligonucleotide corresponding
to sequences close to the 5 end of overlapped MAPIB-
encoding cDNAs was then used as a sequencing primer to
determine upstream genomic sequences. This experiment
showed that while the reading frame specified by the MAPIB
amino acid sequence remains open, there are no potential
upstream AUG codons; however, there is a canonical TATA
sequence that could potentially form part of the promotor for
the MAPIB gene (data not shown). Thirdly, we performed
a primer extension experiment using an antisense oligonu-
cleotide corresponding to nucleotides 17-34 of our MAPIB
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¢DNA sequence (see below) and RNA isolated (from total
mouse brain RNA) by hybrid selection with clone 5X (Fig.
1). The result of this experiment is shown in Fig. 3: an ex-
tended product 69 nucleotides in length appears in the
primed reaction containing selected RNA that is not present
in a control reaction containing an equivalent mass of tRNA.
Because the 5’ end of the primer used in this experiment is
located at nucleotide 34 in the sequence determined from
overlapping cloned cDNAs, this experiment locates the
MAPIB cap site only 35 nucleotides ¥ to the beginning of
the sequence shown in Fig. 4. Given the absence of upstream
AUG codons in upstream genomic DNA and the very short
5’ sequence not represented in our cloned cDNAs, the likeli-
hood of translational initiation occurring at a site 5’ to the
first AUG present in the long open reading frame of our
cloned cDNAs seems very remote.

To confirm the position of the translational termination
codon, which our sequence analysis placed 1.5 kb from the
3" end of our cDNA clones, a restriction fragment spanning
the region containing the 3' end of the long open reading
frame was cloned into a vector designed for the transcription
of RNA sequences. An initiator methionine codon was sup-
plied in frame with the cloned insert via the AUG contained
in the polylinker of the pGEM vector. This construct was lin-
earized at restriction sites that we predicted would be either
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before or after the putative stop codon. These linearized
DNAs were then used as templates for in vitro mRNA syn-
thesis, and the mRNA was translated in vitro in a rabbit
reticulocyte lysate containing [*S]methionine. As shown in
Fig. 2, only the template cut 5’ to the predicted stop codon
(at Kpn I) yields a truncated product, thus confirming the ex-
istence of the stop codon at the position indicated in our
MAPIB cDNA clones.

Because of the large size of MAPIB and the total absence
of any protein sequence data, we checked the putative open
reading frame in two ways, in addition to verifying the start
and stop codons as described above. First, we verified that
the reading frame in each of our original Agtll expression
clones matched the predicted long open reading frame. Sec-
ond, we made seven E. coli-trpE fusion proteins with vari-
ous fragments derived from the set of cDNAs in the reading
frames predicted by our sequence data. In each case, the size
of the fusion protein was in good agreement with that calcu-
lated from our sequence data (data not shown). Two of these
fusion proteins were used to raise antisera: 3d2 (reported
previously [1]) and YXY (see Fig. 1). These two fusion pro-
teins were chosen because of their unusual amino acid se-
quences (see below). The sera generated using these fusion
proteins are especially useful because they uniquely recog-
nize two widely spaced and well defined regions of MAPIB.
In particular, they are in all probability not against phos-
phorylated epitopes; antibodies to phosphorylated epitopes
can produce confusing results, in part because the phos-
phorylation of MAPIB is dependent on developmental stage
(43), and also because some of these antibodies cross react
with phosphorylated epitopes on the neurofilament and other
proteins (2, 31).

Deduced Sequence of MAPIB

The sequence of our overlapping MAPIB cDNAs together
with the deduced amino acid sequence of MAPIB is shown
in Fig. 4. The encoded protein is 2,463 amino acids long,
with a molecular mass of 255,534 D. While this is smaller
than its apparent size on SDS polyacrylamide gels, MAPIB
(like tau, MAP2, and NF-M [18, 24, 25]) is known to run
anomalously large in such gels (12). The predicted size of
MAPIB is, however, ~25% larger than the calculated size
of MAP2, which is consistent with their relative mobilities.

Two regions of repetitive amino acid sequence, each ~200
residues long, are evident in Fig. 4. One is a highly basic re-
gion containing many sequences of the form KKEX, where
X is almost always an acidic or hydrophobic residue. These
repeated motifs do not fall into any strict pattern, although
they are clustered in the central part of a region containing
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many basic amino acids. Indeed, the region from amino
acids 589-787 has a calculated net charge of +30, and both
the methods of Chou-Fasman (11) and Garnier et al. (15) pre-
dict that it folds into short, accessible hydrophilic a-helices,
although these predictions are notoriously unreliable (50).
The second repetitive region of MAPIB spans amino acids
1865-2070, and consists of 12 imperfect 15-amino acid-long
repeats (Fig. 5); each repeat is separated by two noncon-
served amino acids. This region is also quite hydrophilic, and
is predicted to fall on a series of turns in the MAPIB mol-
ecule.

Recently, it has been discovered that MAP2 and tau have
a highly similar carboxyterminal domain that contains three
(or four [19, 20]) 18-amino acid-long imperfect repeats (24,
30). This domain has been shown to constitute the microtu-
bule binding site of MAP2 and tau both in vitro (24, 30) and
in vivo (S. A. Lewis, I. E. Ivanov, G. H. Lee, and N. J. Co-
wan, manuscript submitted for publication). However, the
repeats in MAP2 and tau have no similarity to either the ba-
sic repeated motif of the 15-amino acid-long repeats in
MAPIB, nor are there any regions of significant sequence ho-
mology between MAPIB and either tau or MAP2. Indeed,
when the deduced amino acid sequence of MAPIB is com-
pared with the PIR protein data base, no significant homol-

42.6-

3N.0-

21.5- -

144 -

Figure 6. Translated protein corresponding to the first repeated mo-
tif in MAPIB cycles with microtubules in vitro. Capped RNAs tran-
scribed from two regions (Fig. 1, arrows) were translated in a cell
free system containing [*H]lysine or [*S)methionine (see Mate-
rials and Methods). Translation products were cycled with microtu-
bules, and at each stage, aliquots containing the same amount of
protein (40 pugm) as judged by absorption at Ajs/Ase were ana-
lyzed on a 14% SDS-polyacrylamide gel. Lane /, *H-labeled pro-
tein derived from 5' subclone; lanes 2 and 3, 40 ug of microtubule
protein after 1 and 2 additional cycles of assembly and disassembly
in the presence of added *H-labeled translation product. Lane 4,
35S-labeled protein derived from the 3’ subclone; lanes 5 and 6, 40
pg of microtubule protein after 1 and 2 additional cycles of assem-
bly and disassembly in the presence of added **S-labeled transla-
tion product. The times of exposure have been adjusted to compen-
sate for the difference in specific activity between [*H]lysine and
{**S]methionine in the cell-free system, the relative abundance of
lysine and methionine residues in the respective peptides, and the
relative fluorographic detection efficiency of the two isotopes.
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ogies to other proteins are uncovered. However, the basic
domain of MAPIB encompassing the KKEE and KKE, re-
peated motifs shows some (probably fortuitous) sequence
similarity to basic regions in other proteins, primarily to
histones and other nuclear proteins but also to the highly
charged tails of the neurofilament triplet proteins. This may
account for the cross-reactivity of several anti-MAPIB anti-
bodies with nuclear (12) or neurofilament (31) antigens.
The phosphorylation of MAPIB increases during neurite
outgrowth, both in PC12 cells induced to differentiate with
nerve growth factor (1, 5, 14) and in neuroblastoma celis that
generate neurites when serum is removed from the growth
medium (13). MAPIB is also found in phosphorylated form
in developing axons in vivo (43). These facts, together with
the elevated levels of MAPIB protein found in developing
axons (or neurites) in vivo and in vitro (14, 16, 43), and the
increased affinity of phosphorylated MAPIB for microtu-
bules (13), suggest that phosphorylated MAPIB plays a role
in the cytoskeletal changes that accompany neurite exten-
sion. A casein kinase II type activity is implicated in MAPIB
and S-tubulin phosphorylation both in brain and in cultured
differentiating neuroblastoma cells (13, 46). Casein kinase
II phosphorylates serine and threonine residues in sequences
of the form tf X g where X # K, R; however, only those se-
quences that fall on § turns in a protein appear to be phos-
phorylated (39). The primary recognition sequence for
casein kinase II occurs 81 times in the MAPIB sequence; in
30 cases these sequences are predicted to form {3 turns by the
Chou-Fasman and Garnier algorithms, and, in seven of these
cases, turns are strongly predicted, These 30 potential phos-
phorylation sites are indicated in Fig. 4; nine are clustered
in the region of MAPIB containing the 12 imperfect repeats.

The Microtubule Binding Domain of MAPIB

There exists within the MAPIB amino acid sequence two
regions containing repeated motifs (discussed above). The
fact that the microtubule binding regions of both MAPZ and
tau contain repeated sequences (24, 30), and that microtu-
bules are themselves composed of repeating subunits sug-
gested that one of these regions might constitute the microtu-
bule binding domain. To test the ability of these domains to
bind to microtubules, restriction fragments encoding regions
spanning each set of repeats (Fig. 1, arrows) were subcloned
into RNA transcription vectors; a translational start signal in
the correct reading frame was in each case provided by the
vectors. The resulting constructs were used as templates for
the transcription of capped mRNA, and the transcription
products used to direct protein synthesis in vitro in a rabbit
reticulocyte lysate containing either [*H]lysine (in the case
of the first repeat region, which contains no methionine or
cysteine residues) or [**S]methionine (in the case of the sec-
ond repeat region). The translation products were added to
two-cycle-purified, depolymerized bovine brain microtu-
bules, which were then taken through two further cycles of
polymerization and depolymerization. After each cycle, ali-
quots containing the same amount (40 ugm) of protein were
removed and analyzed by SDS-PAGE, to see whether either
labeled polypeptide could coassemble with the unlabeled
carrier microtubules. The result of this experiment is shown
in Fig. 6. A labeled polypeptide derived from the first repeat
region was observed to cycle with brain microtubules, though
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there is a significant loss (of ~60%} of labeled polypeptide
with each successive cycle; in contrast, a labeled polypeptide
derived from the second repeat region completely failed to
cycle. The relative inefficiency with which the labeled poly-
peptides from the first repeat region cycles with microtu-
bules in vitro could result from competition with endogenous
unlabeled MAPIB present in the microtubule preparations
used in these experiments, or from the inherently poor cy-
cling efficiency of MAPIB with microtubules in vitro (6), or
a combination of both these factors. Nonetheless, these data
suggest that the region containing the basic repeated se-
quence motifs is responsible for the cycling of MAPIB with
microtubules during their purification.

To determine whether this domain is also responsible for
MAPIB-microtubule interactions in vivo, a construct de-
signed to express the entirety of MAPIB was made and trans-
fected into cultured cells. To facilitate the assembly of a full-
length MAPIB coding region, we isolated a mouse genomic
clone from a cosmid library containing a 6-kb exon (Fig. 1,
clone C). After joining this exon to cDNAs derived from the
5" and 3’ ends of the MAPIB transcript, the full coding se-
quence was inserted into a vector containing promotor and
terminator sequences derived from SV40. The final construct
was transfected into HeLa and 3T3 cells and the disposition
of MAPIB in transfected cells was assayed by double label
immunofiuorescence, using either of the anti-MAPIB an-
tisera 3d2 and YXY, described above, and a mouse anti-
a-tubulin monoclonal antibody. The observed patterns of
MAPIB staining were dependent on the fixation conditions:
no MAPIB was observed bound to detergent extracted cyto-
skeletal preparations, but in cells fixed directly in methanol
(in which case proteins are fixed and extracted simultane-
ously) MAPIB-decorated microtubules were observed (Fig.
7, a and b). Notably, in cells fixed directly with parafor-
maldehyde, MAPIB filled the cytoplasm, obscuring the mi-
crotubule-bound MAPIB (data not shown). This implies that
much or most MAPIB in transfected cells is in soluble form.
Thus, in contrast to MAP2 (S. A. Lewis, 1. E. Ivanov, G.-H.
Lee, and N. J. Cowan, manuscript submitted for publica-
tion), MAPIB binds to microtubules weakly, and the equilib-
rium favors the unbound state since none remains bound to
microtubules when the unbound portion is removed by deter-
gent extraction. This is consistent with the behavior of
MAPIB in brain (32), and the poor cycling efficiency of
MAPIB with microtubules in vitro (7).

This assay for the binding of MAPIB to microtubules in
vivo allowed us to define the microtubule binding domain by
making constructs expressing deleted forms of MAPIB, and
transfecting them into cultured cells. The results of these ex-
periments are summarized in Fig. 1; representative im-
munofluorescence data are shown in Fig. 7. Deletion of the
5 half of the MAPIB coding region (construct 1B-H} or of
those sequences encoding amino acids 524-848 (construct
1B-K) results in the expression of truncated forms of MAPIB
that have completely lost the capacity to bind to microtubules
(e.g., Fig. 7, cand d). Thus, the region of MAPIB containing
the repeated KKEE and KKE, motifs is alone responsible
for microtubule binding both in vitro and in vivo.

Two further constructs, X and 1B-X (Fig. 1), show that the
microtubule binding domain is divisible. The protein ex-
pressed from X includes only amino acids 646-732, whereas
that expressed from 1B-X contains all of MAPIB with the ex-
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Figure 7. Characterization of the MAPIB microtubule binding domain in vivo. Constructs MAPIB and 1B-K (Fig. 1) were transfected into
HeLa cells. After 72 h, cells were fixed with methanol, and analyzed by indirect double label immunofiuoresence using the YXY antibody
(a and c) directed against a segment of MAPIB (see Fig. 1), and an anti-a-tubulin monoclonal antibody (b and ). a and b, Cells transfected
with MAPIB; ¢ and d, cells transfected with the IB-K construct (Fig. 1); untransfected cells in a are indicated by arrows. Bar, 10 ym.

ception of this region. Surprisingly, the protein expressed
from each of these complementary constructs binds to
microtubules with approximately the same efficiency (within
the limits of our assay) as intact MAPIB. This implies that
at least two subregions from the KKEE and KKE; ~con-
taining region bind independently to microtubules. It there-
fore seems likely that MAPIB binds to at least two tubulin
subunits in the polymer, and that this bridging of subunits is
involved in nucleating microtubule polymerization and in
stabilizing microtubules.

Conclusions

We have cloned and sequenced cDNAs spanning the entire
coding region of the MAPIB gene, and shown that a basic
region of the MAPIB protein, containing many repeats of the
form KKEE or KKE,, is the MAPIB-microtubule binding
domain. This was accomplished experimentally in vitro by
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cycling translated fragments with microtubules, and in vivo,
by transfecting constructs expressing full-length and deleted
forms of MAPIB into cultured cells. The MAPIB binding
domain is completely unrelated to the highly similar micro-
tubule-binding domains of MAP2 and tau, although like
those domains, it has a net positive charge and contains re-
peated elements. Thus, in common with MAP2 and tau (44,
45) MAPIB probably interacts ionically with the negatively
charged carboxyterminal portion of o~ and/or S-tubulin,
though it has not been shown whether these molecules com-
pete for the identical site on microtubules. The binding of
MAPIB to microtubules is weak compared with MAP2, and
unlike MAP2 (S. A. Lewis, 1. E. Ivanov, G.-H. Lee, and
N. J. Cowan, manuscript submitted for publication) expres-
sion of high levels of MAPIB in cultured cells does not result
in any obvious cytoskeletal changes (Fig. 7, a and b). How-
ever, MAPIB has two light chains that also associate with
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MAPIA (22, 23, 43); these and/or other coexpressed pro-
teins may alter the properties of MAPIB.

The data presented here for MAPIB, together with that
reported previously for MAP2 and tau (19, 20, 24, 30) and
for kinesin (53), define three structurally unrelated kinds of
microtubule binding domains. These differences must in some
way reflect the different functions served by the interaction
of each MAP with microtubules. For example, kinesin, which
acts as a motor for anterograde transport along microtubules
(8, 48), would be expected to have completely different bind-
ing properties from MAP2, which crosslinks and stabilizes
microtubules in dendrites (S. A. Lewis, 1. E. Ivanov, G.-H.
Lee, and N. J. Cowan, manuscript submitted for publica-
tion). Therefore, it is not surprising that their binding do-
mains are completely dissimilar. It seems probable that each
of these three binding domains is representative of a separate
family of functionally related microtubule-associated pro-
teins,

We thank Dashou Wang for help with DNA sequencing.
This work was supported by grants from the National Institutes of Health
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