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Abstract. Abplp is a yeast cortical actin-binding pro- 
tein that contains an SH3 domain similar to those 
found in signal transduction proteins that function at 
the membrane/cytoskeleton interface. Although no de- 
tectable phenotypes are associated with a disruption 
allele of ABP1, mutations that create a requirement for 
this protein have now been isolated in the previously 
identified gene SAC6 and in two new genes, SLA/ and 
SLA2. The SAC6 gene encodes yeast fimbrin, an actin 
filament-bundling protein. Null mutations in SLA/ and 
SLA2 cause temperature-sensitive growth defects. Slalp 
contains three SH3 domains and is essential for the 
proper formation of the cortical actin cytoskeleton. 

The COOH terminus of Sla2p contains a 200 amino 
acid region with homology to the COOH terminus of 
talin, a membrane cytoskeletal protein which is a 
component of fibroblast focal adhesions. Sla2p is re- 
quired for cellular morphogenesis and polarization of 
the cortical cytoskeleton. In addition, synthetic-lethal 
interactions were observed for double-mutants contain- 
ing null alleles of SLA2 and SAC6. In total, the mu- 
tant phenotypes, sequences, and genetic interactions 
indicate that we have identified novel proteins that 
cooperate to control the dynamic cytoskeletal rear- 
rangements that are required for the development of 
cell polarity in budding yeast. 

T 
HE cortical actin cytoskeleton underlies the plasma 
membrane and is responsible for cell motility and 
adhesion, surface phenomena such as membrane 

ruffling and receptor capping, and transduction of extracel- 
lular signals to the interior of the cell (reviewed by Luna and 
Hitt, 1992; Schwartz, 1992). Genetic defects in components 
of the cortical cytoskeleton can lead to disease states, includ- 
ing muscular dystrophy and certain hereditary anemias 
(reviewed by Luna and Hitt, 1992). A complete understand- 
ing of how the cortical cytoskeleton functions in these 
processes is hampered by its complexity; a large number of 
cortical cytoskeletal proteins are known, and it is probable 
that there are others as yet unidentified. However, even if a 
thorough characterization of the in vitro activities of each 
protein could be achieved, it is unlikely that this would pro- 
vide a complete understanding of how the actin cytoskeleton 
influences cell behavior. One reason for this is that there are 
likely to be a host of regulatory as well as competetive and 
cooperative interactions that may be difficult to model in 
vitro. Moreover, molecular-genetic studies have shown that 
the in vivo contributions of individual cytoskeletal proteins 
can be more subtle than previously supposed (De Lozanne 
and Spudich, 1987; Witke et al., 1992; Adams et al., 1993), 
adding an additional obstacle to understanding the cortical 
cytoskeleton. 

Saccharomyces cerevisiae has a single actin gene, ACT1, 

that is ,o90% identical to most vertebrate actins (Ng and 
Abelson, 1980; Gallwitz and Sures, 1980) and is essential 
for the polarized growth of the cell (Novick and Botstein, 
1985; Read et al., 1992). Wild-type cells initiate daughter 
cell formation by choosing a bud site and confining surface 
growth to this region. Two different actin structures have 
been identified in budding yeast through fluorescence mi- 
croscopy techniques (Adams and Pringle, 1984), and both 
are likely to contribute to morphogenesis. Actin cables are 
arrayed parallel to the mother-bud axis and might be in- 
volved in the spatially directed secretion (Field and Schek- 
man, 1980) that is essential for the polarized growth of the 
yeast cell. In addition, cortical actin structures are found as- 
sociated with the growing surfaces of the cell, and the local- 
ization of these structures changes in a cell cycle-dependent 
manner (Kilmartin and Adams, 1984). The phenotypes of 
mutants defective in the polarized assembly of the yeast cor- 
tical cytoskeleton demonstrate a role for these structures in 
cellular morphogenesis (Novick and Botstein, 1985; Adams 
et al., 1989, 1990; Amatruda et al., 1990; Read et al., 
1992). 

One component of the yeast cortical cytoskeleton is the 
65-kD product of the ABP1 gene (Drubin et al., 1988). 
The NH2 terminus of Abplp shares 41% similarity with 
yeast cofilin, a low molecular weight actin filament-sever- 
ing protein (Moon et al., 1993), while its COOH termi- 
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nus contains a 50 amino acid region termed the src-homology 
domain 3 (SH3) ~ (Drubin et al., 1990). This motif is found 
in a large and diverse group of proteins that appear to interact 
with the cortical cytoskeleton (Koch et al., 1991). BEM1, a 
gene required for morphogenesis in S. cerevisiae, contains 
two SH3 domains (Chenevert et al., 1992), providing an in- 
dication that this sequence element might be involved in cell 
polarity development. Interestingly, the SH3 domains of 
both the c-abl and c-src proto-oncogenes have been shown 
recently to bind specifically to 3BP-1, a protein which has 
homology to rho-GTPase activators of the bcr/N-chimaerin 
family (Cicchetti et al., 1992; Yu et al., 1992). Proteins of 
this class might mediate interactions between GTP-binding 
proteins implicated in polarity development (reviewed by 
Drubin, 1991) and the cytoskeleton via the SH3 domains of 
Abplp and/or Bemlp. 

Overexpression of ABP1 grossly perturbs the cytoskeleton 
(Drubin et al., 1988). Cells with elevated Abplp levels are 
temperature sensitive (Ts-) for their growth and become 
large and spherical, losing the polarity found in wild-type 
cells. These studies, along with immunolocalization of 
Abplp to regions of active cell surface growth, implicated 
this protein in the polarized growth of S. cerevisiae. How- 
ever, when the ABP1 gene was disrupted, the mutant cells 
showed no defects in morphogenesis nor any discernable loss 
of cytoskeletal polarity (Drubin et al., 1990). These results 
suggested that there might be another gene product(s) in 
yeast that compensates for the loss of Abplp. 

In an attempt to isolate more components of the membrane 
cytoskeleton, and to elucidate the molecular mechanisms of 
cellular morphogenesis, we have undertaken a genetic screen 
to identify mutations that create a requirement for ABP1. 
This strategy, termed a synthetic lethal screen, has been use- 
ful for the identification of genes that are involved in a com- 
mon process (Bender and Pringle, 1991). Mutations that cre- 
ate a requirement for ABP1 were isolated in three genes. One 
of these genes, SAC6, encodes the yeast homolog of fimbrin 
(Adams et al., 1989). The two other genes, S/A/and SLA2 
(Synthetically Lethal with ABP1) encode novel proteins. 
The phenotypes of null mutations in SLA/and SLA2 show 
that these genes are essential for the assembly and function 
of the cortical cytoskeleton. Furthermore, the SLA/ and 
SLA2 sequences suggest protein interactions that might allow 
each gene product to regulate cortical actin cytoskeleton as- 
sembly. 

Materials and Methods 

Yeast Methods and DNA Manipulations 

Yeast media and genetic manipulations were performed as described (Sher- 
man et al., 1986). Yeast strains used in this study are listed in Table I. Plas- 
mid DNA manipulations were carded out using standard methods (Ausubel 
et al., 1989). 

Mutant Isolation 
The s/a mutants were isolated using a synthetic lethal strategy based on se- 
lection against the LYS2 and URA3 genes (Basson et al., 1987). DDY 262 
(Table I) contains a nearly complete disruption of the ABP1 gene (extending 
from an XhoI site 227-bp upstream of the start codon to a PvulI site 246-bp 

1. Abbreviations used in this paper: Cs-, cold-sensitive; DAPI, (4',6- 
diamidino-2-phenyl-indole); 5-FOA, 5-Fhioro-orotic acid; SD, synthetic 
minimal media; SH3, src-homology domain 3; Ts-, temperature-sensitive. 

Table L Yeast Strains Used in This Study 

Name Genotype* 

DDY 262 

DDY 277 

DDY 538 
DDY 539 

DDY 296 

DDY 494 
DDY 495 
DDY 496 

DDY 288 
DDY 485 

DDY 540 

MATa ade2-101 1eu2-3,112 lys2-8Olam ura3-52 
abp l-A2 : :LEU2* 
MATs his4-619 leu2-3,112 lys2-8Olam ura3-52 
abp l-A2 : :LEU2* 

MATa 1eu2-3,112 lys2-8Olam ura3-52 sial-3 
MATa ade2-101 his4-619 leu2-3,112 lys2-8Olam 
ura3-52 sla2-2 
MATa leu2-3,112 ura3-52 SLAI : :URA3 

MATa leu2-3,112 ura3-52 
MA Ta 1eu2-3,112 ura3-52 slal-AI : : URA3 
MATa leu2-3,112 ura3-52 sla2-AI : : URA3 

MATa/c~ his4-619~+ leu2-3,112/+ ura3-52/ura3-52 
MATa/ot his4-619~+ leu2-3,112/+ ura3-52/ura3-52 
slal-A1 :: URA3/slal-A1 :: URA3 
MATa/~ his4-619~+ leu2-3,112/+ ura3-52/ura3-52 
sla2-Al : : URA3/sla2-A1 :: URA3 

* All strains are derived from the $288C background. 
Strains were transformed with a centromere plasmid pDD13 (URA3, LYS2, 

ABP1 ). 

upstream of the stop codon, thus leaving only the last 82 amino acids at the 
COOH terminus intact, see Drubin et al., 1990), and a centromere-based 
plasmid (pDD13) which contains the URA3, LYS2, and ABP1 genes. A sta- 
tionary culture of DDY 262 was mutagenized with ethylmethanesulfonate 
until only 15% of the ceils were viable. Approximately 25D00 colonies were 
plated onto 100 YPD plates and then replica plated onto plates containing 
ct-aminoadipate to select against the LYS2 gene as described (Sherman et 
al., 1986). After 3 d, colonies which failed to grow on the or-amino adipate 
plates were picked from the master plate and streaked to single colonies on 
YPD plates. These strains were then tested for their ability to grow on plates 
containing 5-Fluoro-orotic acid (5-FOA), to select against the URA3 gene 
(Boeke et al., 1984). Colonies which failed to grow under both selections 
were backcrossed three times to the unmutagenized parent strain (DDY 262 
or DDY 277) before the complementation analysis was performed. 

Complementation Analysis 

Strains containing all possible double-mutant combinations were generated 
by mating plasmid-dependent MATa ade2-101 ura3-52 leu2-3,112 lys2- 
801am abpl: :LEU2 sla and MATer his4-619 1eu2-3,112 lys2-8Olam ura3-52 
abpl::LEU2 sla strains, and selecting for diploids on minimal media (SD) 
plates supplemented with uracil and lysine to allow for the loss of pDD13. 
These strains were then replica plated to YPD plates and incubated at 37°C, 
and to YPD, ~aminoadipate and 5-FOA plates at 25°C. Plates were exam- 
ined for growth at 36 h (37°C), 48 h (YPD 250C), or 72 h (¢-aminoadipate 
and 5-FOA, 25°C). 

Cloning, Sequencing, and Disruption of SLA1 
and SLA2 

A YCp50 library (Rose et al., 1987) was introduced into the well-behaved 
Ts- sial-3 and sla2-2 strains, DDY 538 and DDY 539, by lithium acetate 
transformation (Ito et al., 1983; Schiestl and Gietz, 1989). The Ura + 
transformants were then replica plated onto SD plates lacking uracil and in- 
cubated at 37°C for 36 h. Colonies that grew well at 37°C were restreaked 
and tested for their ability to grow on both SD and 5-FOA plates at 37°C. 
Nine sial-3 and two sla2-2 colonies displayed plasmid-dependent growth at 
37°C. Plasmids from these strains were recovered by preparing DNA from 
the Ts + colonies, and transforming competent DH5c~ E. coli to ampicillin 
resistance. The plasmid DNAs were then retransformed into the appropriate 
strain to confirm their ability to complement the Ts- phenotypes of the 
sial-3 and sla2-2 strains, respectively. Eight of the nine s/aLcomplementing 
plasmids were shown to be identical based on restriction mapping, and the 
remaining plasmid contained a smaller insert that was contained entirely 
within the other plasmid. The two s/a2-complementing plasmids shared re- 
striction fragments, and this information was used to identify the SLA2 open 
reading frame. DNA sequences were determined using the dideoxy chain 
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termination method (Sanger et al., 1977) using Sequenase (United States 
Biochemical, Cleveland, OH) according to the suggested protocol of the 
manufacturer. SLA/ was sequenced using an Exonuelease III deletion 
strategy and double-stranded plasmid DNA preparations; SLA2 was se- 
quenced by subcloning fragments into double stranded M13 phage and 
generating single-stranded DNA templates (Ausubel et al., 1989). Linkage 
of the cloned DNA to the SLA/locus was demonstrated by integrating the 
URA3 gene into the chromosome adjacent to the open reading frame and 
mating this strain (DDY 296) to two different Ts- slal mutations. All of the 
44 tetrads dissected from the matings showed linkage (2:2, Ts ÷, Ura÷: Ts-, 
Ura-). For S LA2, a gene disruption mutant (described below) was mated 
to an sla2 mutant isolated in the genetic screen, and the diploid was then 
sporulated. A total of 11 complete tetrads and seven tetrads which had three 
viable spores were scored, and in all cases the spores were temperature sen- 
sitive, demonstrating linkage between the cloned DNA and the sla2 mu- 
tation. 

A complete disruption of the SLA/gene, including 409 nueleotides 5' to 
the NH2-terminal methionine and 213 nueleotides 3' to the stop codon 
(from XbaI at position 49 through Sall at position 4402 in the SLA/gene 
sequence), was generated using the "~t-disruption" strategy with pRS306, 
a yeast integrating plasmid that contains the URA3 gene (Sikorski and 
Hieter, 1989). While it is possible that this disruption might interfere with 
the expression of neighboring genes, the cortical defects of the s/a/deletion 
strain (see Results) are the same as those observed in the Ts- sial mutants 
isolated in the genetic screen (data not shown), and no additional pheno- 
types were observed in the null mutant. The disruption of SLA2 removes 
all but the first 30 amino acids of the coding sequence (from the SphI site 
at position 862 through the Bell at position 3675, which includes the stop 
codon of the SLA2 gene sequence) by a simple one step gene replacement 
(Rothstein, 1983). Briefly, a plasmid containing the SLA2 gene on a 4.5okb 
EcoRI fragment was digested with SphI and treated with T4 DNA Polymer- 
ase before Bell linkers were ligated onto the ends. This plasmid was then 
digested with BclI, and a 1.1-kb Bgill fragment containing the URA3 gene 
was ligated to generate the disruption fragment. The resulting plasmid was 
then digested with EcoRI and transformed into DDY 288, a wild-type 
diploid strain. Both gene disruptions were confirmed by Southern blotting 
techniques (Ausubel et al., 1989). 

Microscopy 

Yeast cells grown to early log phase in YPD were prepared for immuno- 
fluorescence as previously described (Pringle et al., 1991). Affinity-purified 
rabbit anti-aetin antibodies were used at a 1:50 dilution and visualized using 
fluorescein-labeled goat anti-rabbit secondary antibodies (Cappel/Organon 
Teknika, Malvern, PA) at a dilution of 1:1,000. Ceils were photographed 
with a Zeiss Axioscope fluorescence microscope with an HB100 W/Z high 
pressure mercury lamp and a Zeiss 100x Plan-Neofluar oil immersion ob- 
jective (Carl Zeiss Inc., Thornwood, NY) with either phase or Nomarski 
optics. 

Results 

Isolation of ABPl-requiring Mutants 

The strategy that we used to isolate mutations that require 
ABP1 relies on the ability to select against the URA3 and 
LYS2 genes with 5-FOA and t~-aminoadipate, respectively 
(Boeke et al., 1984; Chattoo and Sherman, 1979), and on 
the fact that in the absence of positive selection, centromere- 
based plasmids are lost from a small percentage of the cells 
that form a colony (Basson et al., 1987). The starting haploid 
strain, DDY 262 (Table I), contains a complete disruption 
of ABP1 (see Materials and Methods). Additionally, this 
strain was transformed with pDD13, a centromere-based 
plasmid that contains the ABP1, URA3, and LYS2 genes. The 
population of cells that loses the plasmid during growth on 
non-selective plates will be insensitive to the negative selec- 
tions by 5-FOA and u-aminoadipate. After mutagenesis, 
however, cells that have aquired a mutation which makes 
ABP1 essential will be unable to lose the plasmid, and will 

Table II. Complementation Analysis of ABPl-requiring 
mutants 

Number of 
Group Gene alleles (Ts-) 

I SLA1 13 (5) 
II SLA2 5 (5) 
III SAC6 4 (4) 

For each complementation group, the gene name, total number of alleles, and 
number of temperature-sensitive alleles ( ) are shown. 

therefore fail to form colonies on either ct-aminoadipate or 
5-FOA plates. 

We tested ,',,25,000 ethylmethanesulfonate-mutagenized 
colonies for their ability to grow on tx-aminoadipate plates. 
Colonies (1148) which showed reduced growth were picked. 
These strains were then analyzed for their ability to grow on 
plates which contained 5-FOA. A total of 148 colonies failed 
to grow under both negative selection schemes and were thus 
good candidates for ABPl-requiring mutants, After three 
rounds of backcrossing, 24 independent strains showed 
segregation of a single nuclear mutation that made the ceils 
dependent on pDD13 for their growth. The other 124 strains 
appeared to require multiple mutations to create the plasmid 
dependence, or had severe defects in their ability to sporu- 
late, and were not studied further. The 24 well-behaved 
strains were also tested for their ability to grow at both high 
(37°C) and low (14°C) temperatures, and 14 strains showed 
a Ts- growth defect genetically linked to the ct-aminoadi- 
pate/5-FOA sensitivity (Table II). No cold-sensitive muta- 
tions (Cs-) were found. Two of these 24 strains could not 
be complemented by a plasmid which carried only the LYS2 
and ABP1 genes, and were subsequently shown to require the 
URA3 gene for their growth (N. Machin, unpublished obser- 
vations). 

To determine the number of loci that were represented by 
the 22 ABPl-requiring mutant strains, a complementation 
test was performed. Diploids created by crossing the haploid 
single mutants (see Materials and Methods) were tested for 
their ability to grow on 5-FOA. All of the mutations isolated 
were found to be recessive. The 22 strains fell into three 
complementation groups (Table II). The four mutations in 
complementation group III are new alleles of SAC6, a gene 
which encodes an actin filament-bundling protein that is the 
yeast homolog of fimbrin (Adams et al., 1989, 1991). This 
was determined by a failure of these strains to complement 
a null allele of SAC6, and additionally by demonstrating link- 
age to a marked SAC6 locus (data not shown). The two other 
complementation groups, termed SLA/and SLA2, contained 
13 and five alleles, respectively. 

Isolation and Sequence Analysis of the SI.A1 and 
SLA2 Genes 

The SLA/and SLA2 genes were isolated by complementing 
the temperature sensitivity of mutant alleles of these genes 
(see Materials and Methods). For SLA/, targeted integration 
was used to show that the cloned DNA represents the mutant 
locus; for SLA2, an sla2 gene disruption mutant (see below) 
was mated to an sla2 mutant isolated in the original screen 
and spore analysis was used to prove linkage (see Materials 
and Methods). In each case, deletion analysis and subcloning 
were used to identify the minimum complementing frag- 
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Slalp (76) 
Slalp (360) 
Abplp (539) 
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Bemlp (162) 

CONSENSUS: 

ALYDYESRT--ETDLSFKKGERLQIVNNTEG-DWWLAHSLTT-GQTGYIPSNYV 

AVYAYEPQT--PEELAIQEDDLLYLLQKSDIDDWWTVKKRVI-GSDSEEPVGLV 

AIYDYEQVQNADEELTFHEND-VFDVFDDKDADWLLVKSTVS-NEFGFIPGNYV 

VQYDFMAES--QDELTIKSGDKVYILDDKKSKDWWMCQLVDS-GKSGLVPAQFI 
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AKYSYQAQT--SKELSFMEGEFFYVSGDEK--DWYKASNPST-GKEGWPKTYF 

VLYDFKAEK--ADELTTYVGENLFICAHHNC-EWFIAKPIGRLGGPGLVPVGFV 
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D 
S. put. (169) GGAMMSPQQMGGQPQ 

S. fran. (203) GGAM-MGQQGMGGVPQ 

Slalp (1049) GGAM/MPQTSFNALPQ 

Conserved: GGAIV/M PQ 

Figure 1. Predicted amino 
acid sequence of Slalp. (A) 
The predicted sequence of 
Slalp is shown in single letter 
amino acid code with the three 
SH3 domains in bold type. 
The region of highest charge 
density is underlined, and 
asterisks overlie the COOH- 
terminal core repeats. (B) 
Comparison of the SH3 do- 
mains from c-src and three 
yeast proteins. Top line of the 
consensus sequence is found 
in at least four of the seven 
SH3 domains shown, and the 
lower line is either a conserva- 
tive substitution (e.g., E/D) of 
the primary residue, or found 
in at least two of the variant 
sequences shown here. Num- 
bers in brackets refer to the 
position of the first amino acid 
of the SH3 domain within the 
identified protein. (C) Dot- 
plot display of repeated nature 
of Slalp. The COOH terminus 
of Slalp (residues 622-1244) 
is shown compared to itself 
using the GCG computer soft- 
ware Compare program with a 
window of 20 and stringency 
of 13. (D) Comparison of one 
extended repeat from Slalp to 
the related region of bindins 
from Strongelocentrotus pur- 
puratus (S. pur.) (Gao et al., 
1986) and Strongelocentrotus 
franciscanis (S. fran. ) (Minor 
et al., 1991). The SLA/ se- 
quence data are available from 
EMBL under accession num- 
ber Z22810. 

ment, and the nucleotide sequence of the fragment was then 
determined. The sequences of the predicted protein products 
are shown in Figs. 1 and "~2. 

The SLA/gene contains a 1244 amino acid open reading 
frame that could encode a protein of 136 kD. Slalp shares 
structural homology with Abplp; Abplp has one SH3 do- 
main, while Slalp has three of these domains (Fig. 1, A and 
B). Another interesting feature of Slalp is a repeat structure 
found in the COOH terminus, including numerous elements 
with the core TGGAMMP (Fig. 1, A and C). This region is 
nearly devoid of charged residues, with only three acidic and 
eight basic residues in the COOH-terminal 386 amino acids. 
Database searches with this sequence identified significant 
similarity to a region of the sea urchin sperm adhesion pro- 
tein bindin (Fig. 1 D), although many of the Slalp repeats 
are more divergent and/or are truncated (Fig. 1 A). In strik- 
ing contrast to the COOH terminus, the central third of Slalp 

is highly charged; one stretch of 50 amino acids contains 37 
(74%) charged residues (Fig. 1 A). 

The SLA2 gene sequence predicts a 109-kD protein prod- 
uct of 968 amino acids (Fig. 2). A database search identified 
significant similarity between Sla2p and a Caenorhabditis 
elegans talinlike protein (Genpept accession No. celzk370-3; 
Bob Waterston, personal communication). The sequences 
are 22 % identical and 34 % similar in a pairwise alignment. 
The COOH termini of these proteins are more highly 
related, with 34 % identity and 46% similarity over the last 
200 residues. In addition, the COOH termini of both these 
sequences are related to murine talin (Rees et al., 1990). 
Sla2p is 28% identical and 36% similar to murine talin over 
this same 200 amino acids (Fig. 2). Several regions (e.g., 
GL[I/L]SAA and [V/I]AAST[I/A]QL, beginning at residues 
818 and 861 of Sla2p, respectively) are well conserved in all 
three proteins. 

The Journal of Cell Biology, Volume 122, 1993 638 

D
ow

nloaded from
 http://jcb.rupress.org/jcb/article-pdf/122/3/635/1474316/635.pdf by guest on 24 April 2024



Sla2p MSR IDSDI,QKALK KACSVEETAP KRKHVRACIV 

I :  I 1 : :  I I [ I  I : 1 1  
celtalin MDHRAQAREV FVRAQLEAVQ KAITKNEVPL KPKHARTIIV 

Sla2p GHPSALAEAI RDRDWIRSLG ..RVHSGGSS YSKLIREYVR 

I I  I I I I I I :1  I : :  
celtalin GHRKVPEETY RYVNRFTQLS QFWKHLNTSG YGPCIESYCK 

Sla2p ILDLMSLQDS LDEFSQIIFA SIQSERRN ..... TECKISA 

: 1 : :  I I : :  : I I I I :1  
celtalin TIDMLDQMDA LLVLQDRVYE MMNSLRWNSL IPQGQCMLSP 

Sla2p RYELQHARLF EFYADCSSVK YLTTLVTIPK LPVDAPDVFL 

[ :  I I I  : I : I I [ : 1 1  I I  11 
celtalin RFRTIFERTK KFYEESSNLQ YFKYLVSIPT LPSHAPNFLQ 

Sla2p ISPRPVSQRT TSTPTGYLQT MPTGATTGMM IPTAT..GAA 

I I  I ]  : : I : I 
celtalin ............ TPHAYLIIS EGSEDGTSLN GHDGELLNLA 

Sla2p QQAQQELFQQ QLQKAQQDMM NMQLQQQNQH QNDLIALTNQ 

1 : 1 1 : 
celtalin ARSRIEQYEN RI,LQMQGEFD HAKREADENR EEAQRLKNEL 

S]a2p TALQDQLDVW ERKYESI,AKL YSQLRQEHLN I,LPRFKKLQL 

I : :  : : I I I 1 :  I : :1  
celta[in .......... F~ERFNKMKGV Y E K F R S E H V L  ALTKLGDIQK 

Sla2p ERSINNAEAD SAAATAAAF, T MTQ ..... DK MNPILDAILE 

I : II 1 1 : : : :I : 1 
celtalin GRALTKAEGD AGAVDEMRTQ LVKADIEVEE I,KRTIDHLRE 

Sla2p TEFATSFNNL IVDGLAHGDQ TEVIHCVSD. .FSTSMATLV 

J l  : :  : : 1  : 1 1  
celtalin DALQNATSIT YPPH[,AQSAM NNLVNILSNE RI,DEPLATKD 

S]a2p NLNQVGDEEK TDIVINANVD MQEKLQEI,SL A!EPLLNIQS 

I: : I: II 1 1 
celta] [ r l  AKVAVSDDSA LSRADKMKI,I, RQDIQTLNSL MISLPLQTDI 

murtalirl ..LNFEEQII, EAAKSIAAAT SA[,VKAASAA QRELVAQGKV 

: :I 1 1 I lllllt I I: 

S]a2p LRVDVPKPLL SLALMIIDAV VALVKAAIQC QNEI..ATTT 

: 1 : : 1  :1  : :  : : I I  I : I I I  I 
celta[in IRLEVNITSIL ANCQALMSVI MQLVIASREL QTEIVAAGKA 

mu~ta] ] n QGHA .... SQ EKLISSAKQV AASTAQLI,VA CKVKADQDSE 

1 I 1 1 1 fill II: I :II 1 
S!a2p TSEDNENTSP EQFIVASKEV AASTIQLVAA SRVKTSIHSK 

1 1 III I: IIII II IIII 1 
celta]in TGKG .... KF EHLIVAAQEI AASTAQLFVS SRVK~KDSS 

murta[Jn VVVKEKMVGG IAQIIAAQEE MLRKERELEE ARKKLAQIRQ QQYKFLPSEL RDEH 2541 

: [ I : 1 :  I I I l l  I I I  I : 
S],~2p DFT..SEHTL KTAEMEQQVE ILKLEQSLSN ARKRLGEIRR HAYYNQDDD 968 

If: ', J I ! 1 1  I I  :1 I l l l [  I :1 : 1 :  I 
celtalin DFSYLSLHAA KKEEMESQVK MLELEQSI,NQ ERAKLAALRK QHYHMAQLVA NKVSF 923 

YTWDHQSSKA VFTTLKTLPL ANDEVQLFKM L[VLHKIIQE 73 

I I I  I :  : I I I : : : 1 1 : :  : 
GTHKEKSSGI FWHTVGRIQL EKIIPVLTWKF CHLVHKLLRD 80 

YLVLKLDFHA HHRGFNNGTF EYEEYVSLVS VSDPDEGYET 151 

I : :  I I  I : : I I : 1  
LLHDRVTFHN KYPVV.PGKL DLNDSQLKTL ECDLDNMFEM 159 

LIPLIAESYG IYKFITSMLR AMHRQLNDAE GDAALQPLKE 226 
I I  I : :  I : :  I :  : 1  I :  ]1  : 
LIIAILDTSK FYDYLVKMIF KLHSQV .... PPDALEGHRS 235 

INDVDESKEI KFKKREPSVT PARTPARTPT PTPPVVAEPA 306 

I : :  : 
Q S D L E S Y R  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 8 3  

NAIFPQATAQ MQPDFWANQQ AQFANEQNRL EQERVQQLQQ 384 

1 II: III 1 : :I 
EAEPQQASPS SQPDPREEQI VMLSRAVEDE KFAKERLIQE 351 

YEKDQALLQQ YDQRVQQLES EITTMDSTAS KQI,ANKDEQL 464 

:I I 1 II 1 1 
ALRDASRTQT DDARVKEAEL KATAA ............... 416 

KVNSAQESIQ KKEQLEHKLK QKDLQMAELV KDRDRARLEL 544 

: 1 II : 1 : : I I 
QLEASEKSK .......... F DKDEEITALN RKVEEAQREA 476 

SGINTIQESV YNLDSPLSWS G P I , T P P T F I A ~  SI,LESTSENA 619 

1 I : 1 : : : 
SHANQLVQSS AEETNKIRLA ELEVAKESGV GITQMFDHCE 556 

TNSKAYAVTT LPQEQSDQIL TLVKRCAREA QYFFEDLMSE 697 

: : 1  I : :  
NVFAGHLLST TLSAAASAAY TASIESYEGV NDQCKKVLAA 636 

VKSNKETNP}I SEI,VATADKI VK . . . . . . . . . . . . . .  SSEH 763 

1 I: I 1 : II: 
DKDVVGNELE QEMRRMDDAI RRAVQEIEA] QRRARESSDG 716 

GAIPANALD. DGQWSQGLIS AARMVAAATN NLCEAANAAV 2415 

I :  [ 1 1 1  I 1 :  I I  I I I  I :  I : 
SIPLNQFYLK NSRWTEGLIS AAKAVAGATN VLITTASKLI 842 

I I  : I I ! l i ! : l  I I I I I  I [ 1 :  : l  : :  
GGSPAEFYKR NHQW'I'EGLI,S AAKAVGVAAR VI,VESADGVV 796 

AMKRLQAAGN AVKRA .... S DNI,VKAAQKA AAVEDQENET 248"; 

I :1  I I : :  i 
AQDKLEHCSK DVTDACRSLG NI]VMGMIF'~DD HSTSQQQQPL 921 

] 1 1 1 I: : :I 1 
KLDALSVAAK AVNQN .... T AQWAAVKNG QTTLNDI~GSL 868 

Figure 2. Predicted amino 
acid sequence of Sla2p and 
comparison with Caenorhab- 
ditis elegans talinlike se- 
quence (celtalin) and murine 
talin (murtalin). Due to the 
length of murine talin and the 
absence of significant similar- 
ity to either Sla2p or celtalin 
in the NH2-terminal 80% of 
the protein, only its COOH 
terminus is compared. Identi- 
ties are indicated by a bar (I), 
and conserved amino acids 
(D,E; M, I, V, L, C; K, R; Y, 
F) are shown by a colon (:). 
At positions where only murine 
talin and the C elegans talin- 
like sequence are identical, 
these residues are shown in 
bold. The SLA2 sequence data 
are available from EMBL 
under accession number 
Z22811. 

Null  Mutat ions in SLA1 and S L A 2  Cause 
Morphological Defects 

To determine the in vivo roles of Slalp and Sla2p, homolo- 
gous recombination was used to delete one copy of SLA/and 
SLA2 (independently) in wild-type diploid strains (see 
Materials and Methods), and the heterozygous diploids were 

Figure 3. sial and sla2 deletion strains show temperature-sensi- 
tive growth defects. Haploid wild type (WT), s/a/A, and sla2A 
(DDY 494, 495, 496) strains were replica plated and grown for 
36 h (37°C, 34°C), 48 h (30°C, 25°C), 72 h (20°C), or 5 d (14°C) 
on YPD plates before being photographed as shown. 

then sporulated. Deletions of either SLA/or SL42 make cells 
temperature sensitive for growth, with the sla2 deletion 
strains showing a narrower permissive temperature range 
(Fig. 3). sial deletion mutant strains grow well at 34°C, 
while sla2A mutants fail to grow at 34°C and grow poorly 
at 30°C. 

sial and sla2 null strains also show morphological defects, 
despite the fact that these cells have an intact copy of ABP1. 
Wild-type diploid strains are ellipsoid in shape (Fig. 4, a and 
c). In contrast, sla2 null strains are spherical in appearance, 
even at 200C (Fig. 4 i). In addition, DAPI staining showed 
that a small number of cells ('~3 %) are multinucleate (data 
not shown). At the non-permissive temperature of 37 °C, sla2 
null strains grow isotropically and become significantly 
larger than wild-type cells (Fig. 4 k). After 90 min at the 
non-permissive temperature, '~20% of the cells are mul- 
tinucleate (Fig. 4 l). The defect in s/a/strains is less severe 
than sla2 strains at 20°C, although the cells are noticeably 
more spherical than wild type (Fig. 4 e). At non-permissive 
temperatures (37°C) s/a/null strains show more pronounced 
morphological defects (Fig. 4 g). A variety of abnormalities 
are seen, including round cells, ceils which have abnormal 
surface protrusions, and an increase in the range of cell sizes. 
In addition, '~20% of the cells appear heavily vacuolated un- 
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Figure 4. sial and sla2 deletion strains show defects in morphogenesis. Wild-type (DDY 288) (a-d), s/a/A (DDY 485) (e-h), and sla2A 
(DDY 540) (i-l) diploid cells were grown at 20°C overnight and then shifted to 37°C for 90 min. Cells were fixed and mounted on slides 
with their cell walls intact. Nuclei are visualized using DAPI. Scale bar in a is 5 #m and applies to all panels. 

der Nomarski optics, and lose nuclear integrity as evaluated 
by DAPI staining (Fig. 4, g and h). The morphologic defects 
of s/a/A and sla2A mutants, like those seen with other mu- 
tants defective in cytoskeletal proteins (Liu and Brescher, 
1989; Amatruda et al., 1990; Adams et al., 1991), are hetero- 
geneous. Further studies using synchronized populations of 
cells will be required to determine if these genes function at 
a particular phase in the cell cycle or are required continu- 
ously throughout the budding process. 

sial and sla2 Mutants Have Unique 
Cytoskeletal Defects 

SLA/and SLA2 are both required for the normal organization 
of the cortical cytoskeleton. The actin cytoskeleton of wild- 
type cells shows two identifiable structures. Actin cables are 
arrayed parallel to the mother-bud axis, while cortical 
patches are highly polarized, being concentrated at the bud 
surface during vegetative growth (Fig. 5, a and c) (Adams 
and Pringle, 1984; Kilmartin and Adams, 1984). In sial null 
strains, a dramatic defect exists in the formation of the corti- 
cal cytoskeleton, even at the nominally permissive tempera- 
ture of 20°C. Instead of the regular punctate staining seen 
in wild-type cells, fewer, larger "chunks" of actin are visible 

in all cells (Fig. 5 e). Despite this defect, the cortical actin 
structures are properly polarized to the bud surface. These 
structures are likely to be composed of actin filaments as 
they stain with rhodamine-phalloidin, a polymer-specific 
probe (data not shown). Actin cables are properly oriented 
in slal null strains, although their fluorescence intensity ap- 
pears reduced compared to staining in wild-type cells. Upon 
shift to non-permissive temperature (37°C), the cortical ac- 
tin structures become delocalized, and cell death becomes 
apparent based on phase microscopy observations (not 
shown). In addition, •5-10% of the cells show other defects 
in actin organization, such as bars of actin and actin staining 
in the nucleus (data not shown). 

The sla2A strain shows a different defect in its cortical 
cytoskeleton. This strain shows a delocalization of cortical 
structures, even at 20°C (Fig. 5 i). Cells also show an appar- 
ent increase in the number of cortical structures per unit sur- 
face area. Cables are present in these cells, though they ap- 
pear to be oriented randomly and are often obscured by the 
large number of cortical structures. Upon shift to the non- 
permissive temperature of 37°C, sla2A cells increase in size, 
and after 90 min, as stated above, ~20% of the ceils are mul- 
tinucleate (Fig. 5, k and 1). 
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Figure 5. slal and sla2 deletion strains show defects in the formation and organization of the cortical actin cytoskeleton. Wild-type (DDY288) 
(a-d), slalA (DDY 485) (e-h) and sla2A (DDY 540) (i-l) cells were grown at 20°C and then shifted to 37°C for 90 min. Cells were 
stained with anti-actin antibodies or DAPI, as indicated. Cells in g that have lost actin staining appear dead based on phase microscopy 
observations (data not shown). Scale bar in a is 5/zm and applies to all panels. 

Genetic Interactions between SLA1, SLA2, and SAC6 

Null mutations in the nonessential SLA/, S/.M2, and SAC6 
genes all create a requirement for the ABP1 gene, although 
some viable double-mutant spores that are severely com- 
promised for their ability to grow do germinate (Adams et 
al., 1993, and data not shown). To determine whether the 
SLA1, $I212, and SAC6 genes showed any other examples of 
functional interactions, heterozygous diploids for all three 
pair-wise combinations of null alleles were sporulated, and 
the dissected tetrads were analyzed for their ability to grow 
at a variety of temperatures, sla2A-sac6A double-mutant 
spores are extremely sick, with >30 % inferred spore invia- 
bility (Fig. 6 B). The s/a2A-sac6A double-mutant spores 
that do germinate do not show growth after 72 h at 20°C 
when replica plated (data not shown), s/a/A-sac6A double 
mutants are viable, Ts- strains that show the same permis- 
sive temperature range as the single mutants (Fig. 6 C, and 
data not shown). The s/a/A -sla2A double-mutant strains are 
viable, but are sicker than null alleles of either SLA/or SL,42 
(Fig. 6 A). Double-mutant strains grow poorly at 20°C and 
25°C, and fail to grow at 30°C, a temperature at which both 
s/a/ and sla2 single mutant strains are viable (Fig. 3, and 

data not shown). The interactions between mutations in 
ABP1, SAC6, SLAI, and SLA2 are summarized in Fig. 7. 

Discussion 

In this study we have identified proteins required for cortical 
cytoskeletal function based on their interactions in the living 
cell. Mutations in three genes can create a requirement for 
the cortical actin-binding protein Abplp in S. cerevisiae. 
One of these genes, SAC6, encodes an actin filament- 
bundling protein previously shown to be a component of the 
cortical cytoskeleton. The two new genes isolated in this 
screen, SLA/and SLA2, have homologies which suggest that 
they are novel components or regulators of the actin 
cytoskeleton. Phenotypic analysis of slalA and sla2A mu- 
tants confirms that these genes, unlike ABP1, are essential 
for proper membrane cytoskeleton assembly and morpho- 
genesis. 

One unexpected finding is the structural diversity of pro- 
teins that, based on genetic interactions, define a function- 
ally overlapping set. For example, although null mutations 
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Figure 6. Genetic interactions between s/a/, sla2, and sac6 deletion mutations. (A-C) Heterozygous diploids containing all three pair-wise 
combinations of null mutant alleles were sporulated, dissected and grown for 4 d at 25°C before being photographed. Colonies were then 
replica plated to determine the segregation of the marked mutant alleles. Tetrad genotype (TT, tetratype; PD, parental ditype; and NPD, 
non-parental ditype) is indicated, and the identity of the double mutant spore(s) is shown in parenthesis. 

in SAC6 and ABP1 are synthetically lethal, their protein 
products show no similarity at the level of primary structure. 
Importantly, not all double-mutant combinations within the 
group of four genes studied here show a negative synergism 
at 25°C (e.g., sac6A-slah~). This demonstrates that the con- 
tributions of Sac6p, Slalp, and Sla2p to cell viability are not 
identical, and therefore that the nature of their redundancies 
with Abplp may also be distinct. 

Understanding the synthetic-lethal relationships between 
mutations in ABP1, SAC6, SLA1, and SLA2 could shed light 
on the roles that their protein products play in the regulation 
of the cortical cytoskeleton. Null mutations in SAC6, SLA1, 
and SLA2 all result in inviability at 37°C, indicating that the 
yeast actin cytoskeleton is functionally compromised at high 

I I - -  ~-I s,.2p i:::!!i!i:~!i!:i: !::i~ i::!i~t Sac6p 

\ 

I 
L~ Slalp 

SH3 ~ Cofilin-like ~ Actin-binding 

Talin-like ~ Bindin-like 

~- Synthetic Effects ~1 . . . . . .  ~ Additive Effects 

Figure 7. Schematic diagram of the protein structures of Abplp, 
Slalp, Sla2p, and Sac6p, and the genetic interactions observed be- 
tween mutations in their corresponding genes. "Synthetic Effects" 
(e.g., s/a2A-sac6A) are distinguished from ~tdditive Effects" (e.g., 
s/a/~-sla2A) to signify that the former class of interactions has 
significantly more severe effects on cell growth and/or viability than 
the latter (see text). 

temperatures without its full complement of these accessory 
proteins. How can we explain the genetic interactions be- 
tween mutations in this set of genes? One model is suggested 
by biochemical analyses of cytoskeletal components. In 
vitro, many actin-binding proteins are multifunctional (Pol- 
lard and Cooper, 1986; Hartwig and Kwiatkowski, 1991), 
and perhaps this is reflected in the genetic relationships we 
observe. Thus, Abplp might be multi functional, and Sac6p, 
Slalp, and Sla2p might be redundant with different biochemi- 
cal activities of Abplp. An additional point that must be con- 
sidered is that abpl null mutants grow well at 37°C. It may 
be that the temperature sensitivity of strains lacking either 
Sac6p, Slalp, or Sla2p is due to the loss of functions that are 
not redundant with Abplp. In support of this possibility, we 
have isolated eight alleles of SLA/which create a dependence 
on ABP1 but do not cause cells to become Ts-. These al- 
leles may be specifically deficient in an Slalp activity which 
is redundant with Abplp while retaining other functions 
necessary for growth at high temperature. 

On a biochemical level, it is possible that the synthetic- 
lethal interactions are due to the loss of activities that exert 
similar effects on the actin cytoskeleton, albeit through 
different mechanisms. For example, it is possible that pro- 
teins which cap the ends of filaments and proteins which bind 
to the sides of filaments might each slow actin filament depo- 
lymerization in vivo. In addition, the function of the yeast 
actin cytoskeleton can be affected by gene dosage (Drubin 
et al., 1988; Wertman et al., 1992), and this may help to ex- 
plain the results of our screen. In this case, Sac6p, Abplp, 
and Sla2p might all have similar effects on actin organiza- 
tion, and cell viability would depend on the expression of at 
least two of these proteins. Sac6p is known to bundle actin 
filaments (Adams et al., 1991). In vitro assays to determine 
the effects that Abplp, Slalp, and Sla2p have on actin assem- 
bly may provide clues to help understand the genetically 
defined redundancies. While all of these gene products can 
affect the actin cytoskeleton (Drubin et al., 1988; Adams et 
al., 1991; Fig. 5), it is also possible that the lethality of cer- 
tain double-mutant combinations is the result of deficiencies 
that are unrelated to the effects these proteins have on the or- 
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ganization of actin. For example, some mutant combinations 
might hinder the integration of cortical events with those oc- 
curring in other compartments of the cell. 

What role do SLA/and SLA2 play in polarized growth and 
the regulation of the actin cytoskeleton? Mutations in both 
genes affect the ellipsoid cell shape characteristic of wild-type 
diploid cells, with the mutants growing more spherically. 
Immunofluorescence experiments reveal striking defects in 
the cortical cytoskeletons of these strains. Significantly, the 
s/a/A and sla2A defects are distinct, indicating that these 
genes play fundamentally different roles in the cell. The 
s/a/A mutants show a unique defect in the formation of their 
cortical cytoskeleton. Previously, all mutations affecting the 
cortical actin cytoskeleton were found to cause a delocaliza- 
tion of wild-type actin structures (as judged by immunoflu- 
orescence experiments). In s/a/null  strains, a smaller num- 
ber of F-actin structures are found at the cortex, and these 
structures appear larger in size. However, these aberrant 
structures are properly polarized to the growing bud. Slalp 
might therefore be involved in controlling the size of the cor- 
tical patches, perhaps by regulating the nucleation of fila- 
ments at the cortex. A decrease in the number of actin nucle- 
ation sites might be expected to favor incorporation of 
monomeric actin onto preexisting filaments, resulting in 
fewer, larger structures. In contrast to s/a/A strains, sla2A 
strains show a cytoskeletal phenotype more similar to muta- 
tions that affect cell polarity (e.g., cdc42, cdc43), where the 
cortical patches are uniformly distributed at the cell cortex 
rather than being concentrated in the bud, and cell growth 
is isotropic rather than polarized (Adams et al., 1990). 
Therefore, Sla2p might act in concert with proteins such as 
Cdc42p and Cdc43p to limit the region of cortical patch for- 
mation to the cortex of the bud. 

A complete understanding of yeast morphogenesis will re- 
quire determining how actin assembly is controlled both spa- 
tially and temporally. Slalp contains three SH3 domains. 
Abplp and Bemlp, other proteins implicated in polarized 
growth in S. cerevisiae, also contain SH3 domains (Drubin 
et al., 1990; Chenevert et al., 1992). This motif has been 
shown recently to bind specific ligands including 3BP-1, a 
protein which has a region of homology with rho GTPase ac- 
tivators of the bcr/N-chimaerin family (Cicchetti et al., 
1992). Finding an SH3-1igand(s) in yeast might help estab- 
lish a biochemical link between the bud site selection/polar- 
ity genes and the cytoskeleton (reviewed in Chant and Prin- 
gle, 1991; Drubin, 1991). Unlike SLA/, however, null 
mutations in BEM1 are not lethal in combination with abpl 
null alleles (Chenevert, J., and D. A. Holtzman, unpublished 
observations), indicating that although these SH3-containing 
proteins all contribute to the development of cell polarity, 
distinctions exist between their specific functions. This is 
perhaps not surprising as various SH3 domains, while pos- 
sessing several well-conserved consensus residues, do show 
significant divergence (Musacchio et al., 1992) and different 
affinities in their interactions with ligands (Cicchetti et al., 
1992; Ren et al., 1993). 

Another striking feature of Slalp is the extensive repeat 
structure of the COOH terminus that shows limited homol- 
ogy to bindins, a family of species-specific sperm adhesion 
proteins from sea urchins. Bindins have been shown to inter- 
act directly with phospholipid vesicles and to facilitate vesi- 
cle fusion in vitro (Glabe, 1985a, b). It is interesting to note 

that the amino acid composition of this sequence is hydro- 
phobic, a characteristic of viral fusion proteins (White, 
1992), although no activity has yet been ascribed to this re- 
gion of bindin. Perhaps the COOH terminus of Slalp associ- 
ates with the plasma membrane, or contributes to localized 
vesicle fusion at the growing surfaces of the cell. 

Small GTP binding proteins of the rho family (CDC42, 
Rtt03, RH04) are required for bud site formation and the 
asymmetric disposition of the cortical actin cytoskeleton 
(Adams et al., 1990; Johnson and Pringle, 1990; Matsui and 
Toh-e, 1992). In fibroblasts, rho proteins are essential for 
mitogen-induced formation of focal adhesions (Ridley and 
Hall, 1992), protein complexes that link actin stress fibers 
to the plasma membrane and extracellular matrix (reviewed 
in Burridge et al., 1988). It is intriguing that the other gene 
isolated in our screen shows significant similarity to the 
COOH terminus of talin, a protein recruited to focal adhe- 
sions by the actions of rho proteins and capable of nucleating 
actin filament assembly in vitro (Ridley and Hall, 1992; 
Muguruma et al., 1990; Kaufmann et al., 1991). By analogy, 
rho-like proteins in S. cerevisiae might regulate the forma- 
tion of a cortical protein complex of which Sla2p is a compo- 
nent, and this in turn could influence the local assembly of 
the actin cytoskeleton. The in vivo activity of rho proteins 
is likely to be downregulated by bcr-GAP molecules (Dick- 
mann et al., 1991; Settleman et al., 1992), and this interac- 
tion might be modulated by SH3-containing proteins. It is 
now important to determine the in vivo localizations of both 
Sla proteins, and to determine if the s/a/and sla2 mutations 
affect the localization of other components of the cortical 
cytoskeleton. 

In conclusion, the actin cytoskeleton of S. cerevisiae pro- 
vides a facile genetic route to examine the complexities of 
the eukaryotic cell cortex. Our identification of proteins re- 
quired for membrane cytoskeletal function and assembly in 
vivo provides a step toward developing a deeper understand- 
ing of the biochemical basis for the genetic redundancies in 
the cytoskeleton, and the way intracellular and extracellular 
signals are integrated to regulate cytoskeletal assembly and 
cell polarity. 
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