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Abstract. The src family tyrosine kinase p59rY~ binds to 
a signaling motif  contained in subunits of the TCR 
known as the immune-receptor tyrosine-based activa- 
tion motif (ITAM). This is a specific property of p59rY'* 
because two related src family kinases, p60 ~rc and p56 t~k, 
do not bind to ITAMs. In this study, we identify the res- 
idues of p59 ry~ that are required for binding to ITAMs. 
We previously demonstrated that the first 10 residues 
of p59rY~ direct its association with the ITAM. Because 
this region of src family kinases also directs their fatty 
acylation and membrane association (Resh, M.D. 1993. 
Biochim. Biophys. Acta. 1155:307-322; Resh, M.D. 
1994. Cell. 76:411-413), we determined whether fatty 

acylation and membrane association of p59 fyn corre- 
lates with its ability to bind ITAMs. Four residues 
(Gly2, Cys3, Lys7, and Lys9) were required for efficient 
binding of p59/yn to the TCR. Interestingly, the same 
four residues are present in p56 lyn, the other src family 
tyrosine kinase known to bind to the ITAM, suggesting 
that this set of residues constitutes an ITAM recogni- 
tion motif. These residues were also required for effi- 
cient fatty acylation (myristoylation at Gly2 and palmi- 
toylation at Cys3), and plasma membrane targeting of 
p59 yyn. Thus, the signals that direct p59 fyn fatty acylation 
and plasma membrane targeting also direct its specific 
ability to bind to TCR proteins. 

T 
HE phosphorylation of proteins on tyrosine residues 
is an early event that is required for TCR signal 
transduction (June et al., 1990; Mustelin et al., 

1990). Because the proteins within the TCR complex do 
not contain intrinsic enzymatic activity, studies have fo- 
cused on the associated protein tyrosine kinases that are 
activated by TCR engagement. Two members of the src 
family of protein tyrosine kinases, p59 yyn and p56/ck, are 
important for TCR signaling and have been localized to 
the receptor complex (reviewed in Samelson and Klaus- 
ner, 1992; Malissen and Schmitt-Verhulst, 1993; Weiss and 
Littman, 1994; Howe and Weiss, 1995). p59 yyn is directly 
associated with the TCR subunits by binding to the signal- 
ing motif known as the immune-receptor tyrosine-based 
activation motif (ITAM) 1 (Samelson et al., 1990; Gass- 
mann et al., 1992; Gauen et al., 1992, 1994), whereas p56 tck is 
brought into the complex upon antigen recognition by its 

Address all correspondence to Andrey S. Shaw, Center for Immunology 
and Department of Pathology, PO Box 8118, 660 S. Euclid, Washington 
University School of Medicine, St. Louis, MO 63110. Tel.: (314) 362-4614; 
Fax: (314) 362-8888; e-mail: shaw@immunology.wustl.edu 

1. Abbreviat ions used in this paper: ITAM, immune-receptor tyrosine- 
based activation motif; SH, src homology; VSV G, vesicular stomatitis vi- 
rus glycoprotein. 

association with the CD4 and CD8 coreceptor proteins 
(Rudd et al., 1988; Veillette et al., 1988; Mittler et al., 1989; 
Shaw et al., 1989; Collins et al., 1992; Dianzani et al., 1992). 

We have been interested in defining the structural fea- 
tures that mediate these interactions. Sequence compari- 
son of src family members demonstrates that they have a 
modular architecture with three highly conserved src ho- 
mology (SH) domains that have been designated as the 
SH1, SH2, and SH3 domains. These domains are responsi- 
ble for enzymatic activity and mediate protein-protein in- 
teractions. An additional nonconserved domain that is 
contained in the amino-terminal 40-70 residues of each ki- 
nase is unique to each family member. Specific and spe- 
cialized functions of each kinase are thought to be medi- 
ated by this domain. In fact, the specific interactions of 
p56 tc~ with CD4 and CD8 and between p59 yyn and TCR 
subunits are mediated by these unique domains. In the 
case of p56 tck, a Cys-X-X-Cys motif (residues 23-26) is re- 
quired for binding to a similar Cys-X-Cys sequence in 
CD4 and CD8 (Shaw et al., 1990; Turner et al., 1990). For 
p59 rrn, however, the sequences responsible for specific 
binding to TCR subunits are contained within the first 10 
residues (Gauen et al., 1992). Because this amino-terminal 
region regulates fatty acylation and membrane association 
of src family kinases, Resh (1993) has recently proposed its 
designation as the SH4 domain. 
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In this study, we identify the features of the p59 fyn SH4 
domain that mediate its association with TCR subunits. 
Site-directed mutagenesis was used to generate a panel of 
p59 fyn proteins that contained alanine substitutions within 
the SH4 domain. Because this domain is responsible for 
fatty acylation and membrane localization of src family ki- 
nases, we also determined whether the fatty acylation and 
membrane localization of each mutated p59 fy~ protein cor- 
related with its ability to bind to TCR subunits. Our results 
demonstrate that multiple features of the SH4 domain are 
responsible for mediating the specific interaction of p59 fyn 
with the TCR and plasma membranes. 

Materials and Methods 

DNA Constructs and Mutagenesis 
Chimeric TCR DNA constructs that contain sequences encoding the ex- 
tracellular domain of the vesicular stomatitis virus glycoprotein (VSV G) 
and the cytoplasmic domain of the TCR or ~ chains (designated as G,  and 
G[, respectively) were described previously (Gauen et al., 1992). The fol- 
lowing DNA constructs were also previously described: p59 ryn, which en- 
codes the hematopoietic-specific isoform of mouse p59 rye, fyn/myc, which 
encodes a myc epitope-tagged form of p59 ~y", and srcl0/fyn/myc, which en- 
codes a myc epitope-tagged form of a p59 fen protein in which the first 10 
amino acids of chicken p60 c'src were substituted for that of p59 fyn (Gauen 
et al., 1992). The DNA constructs encoding the p59 ¢yn proteins that contain 
individual alanine substitutions within the first 10 amino acids (depicted in 
Fig. 1 B) were created by site-directed mutagenesis of the fyn/myc DNA 
construct. Inverse PCR (Hemsley et al., 1989) were performed using the 
following oligonucleotide s (mutated codons are underlined) with the re- 
verse primer 5'CCGGTACCCAATI'CGCCCTA (which anneals with 
pBluescript [Stratagene]): 5 'CGAATTCATAATGGCCTGTGTGCAA- 
TGTAA (G2A), 5 'CGAATTCATAATGGGCGCTGTGCAATGTAA- 
GGA (C3A), 5'CGAATI"CATAATGGGCTGTGCGCAATGTAAGG- 
ATAA (V4A), 5 'CGAATrCATAATGGGCTGTGTGGCATGTAAG- 
GATAAAGA (QSA), 5 'CGAATTCATAATGGGCTGTGTGCAA- 
GCTAAGGATAAAGAAGC (C6A), 5 'CGAATTCA TAATGGGCT- 
GTGTGCAATGTGCGGATAAAGAAGCAGC (K7A), 5'CGAATT- 
C A T A A T G G G C T G T G T G C A A T G T A A ~ A A A G A A G C A G C G A A  
(D8A), 5 'CGAATTCATAATGGGCTGTGTGCAATGTAAGGAT- 
GCAGAAGCAGCGAAACT (K9A), 5 'CGAATI'CATAATGGGCT- 
GTGTGCAATGTAAGGATAAAGCAGCAGCGAAACTGAC (E10A). 
The srcl0/Cys3 DNA construct was generated by PCR using the srcl0/fyn/ 
myc plasmid as a template with the oligonucleotides 5'ACCGC~CGAGA- 
CCATGGGCTGCAGCAAGACd=AAGCCC (encoding the amino acids 
MGCSKSKP) and 5 'GGAAACAGCTATGACCATGAT (which binds 
to pBluescript). The resulting DNA fragment was digested with XhoI and 
EcoRI and ligated into pBluescript SK +. The K7,9A fyn construct was 
made by PCR using the p59 fyn plasmid as a template and the oligonucle- 
otides: 5 'GCAGATGCTGAAGCAGCGAAACTG and 5 'ACATrG-  
CACACAGCCCATFATCCA. The fyn Y531F construct was generated 
by PCR using the p59 fyn plasmid as a template and the oligonucleo- 
tides 5 'TTAACTCGAGTCACAGGTITICACCGGGCTGAAACTG- 
GGG and 5 'TFGTAATACGACTCACTATAG (which binds to pBlue- 
script). DNA sequence analysis using Sequenase (Amersham, Sanger et 
al., 1977) was performed to verify the sequences of the constructs. 

DNA Transfections, Immunoprecipitations, In Vitro 
Kinase Reactions, and Binding Assays 
HeLa cells were cotransfected with p59 fy~ and VSV G/TCR chimeric 
cDNA constructs in a transient expression system. This expression system 
uses a recombinant vaccinia virus encoding a bacteriophage T7 RNA 
polymerase (Fuerst et al., 1986) to infect cells, followed by liposomal- 
mediated transfection of cDNAs. TCR-binding assays were performed by 
coimmunoprecipitation of p59 ry" with VSV GFFCR chimeric proteins us- 
ing an mAb that recognizes VSV G (I1) (Lefrancois and Lyles, 1982). 
Binding of p59 ty" was detected by in vitro kinase reactions of the VSV G 
immunoprecipitates. These procedures were performed as previously de- 
scribed (Gauen et al., 1992). 

Immunoblotting 
Immunoblotting was performed for the binding assays on lysates from du- 
plicate cultures of cells as previously described (Gauen et al., 1992), using 
the antibodies and developing reagents described below. VSV (antiserum 
purchased from Lee Biomolecular Research, Inc.) and p59 ~n (antiserum 
kindly provided by Andr6 Veillette) immunoblots were performed using 
rabbit polyclonal antisera. Myc epitope immunoblots were performed on 
cell lysates using the 9El0 mAb (Evan and Bishop, 1985). Affinity-purified 
HRP-conjugated goat anti-rabbit or goat anti-mouse secondary antibodies 
(Cappel Laboratories, Durham, NC) were used. Proteins were detected by 
chemiluminescence (DuPont/NEN, Boston, MA). When immunobiotting 
immunoprecipitates prepared with the p59 ryn antiserum, biotinylated 9El0 
antibodies and HRP-conjugated streptavidin were used. 

Cellular Fractionation 
HeLa cells were transfected with the indicated DNA constructs and ana- 
lyzed 4-6 h later. The cells were scraped from the dish, pelleted, resus- 
pended in hypotonic buffer (20 mM Tris, pH 6.8, 1 mM MgCI2, 5 mM KC1) 
containing the protease inhibitor aprotinin (20 p.g/ml; Sigma Immu- 
nochemicals, St. Louis, MO), and broken using 25 strokes with a tight-fit- 
ting pestle in a Dounce homogenizer. The suspension was centrifuged at 
1,000 g to remove unbroken cells and nuclei, layered over a 30% sucrose 
cushion, and spun for 30 min at 200,000 g. The supernatants and pellets 
were adjusted to equivalent volumes, loaded onto 8% SDS-polyacryl- 
amide gels, and separated by electrophoresis. The proteins were trans- 
ferred to nitrocellulose and immunoblotted using polyclonal antiserum to 
p59 ~". 

Immunofluorescent Microscopy 
HeLa cells were cultured on glass coverslips and transfected with the indi- 
cated DNA constructs. 5-6 h after transfection, the cells were fixed with 
3 % paraformaldehyde and permeabilized with 1% NP-40 (Sigma). mAbs 
to p59 ryn (1S; Santa Cruz Biotechnology, Inc., Santa Cruz, CA, and Zymed 
Laboratories, Inc., South San Francisco, CA) or to the myc epitope (9El0) 
were incubated with the cells for 20 min at room temperature. The cells 
were washed in PBS (1.2 mM KH2PO4, 8.1 mM Na2HPO4, 138 mM NaC1, 
2.7 mM KC1) with 25 mM glycine and incubated for 20 min at room tem- 
perature with an FITC-conjugated goat anti-mouse secondary antibody 
(U.S. Biochemical Corp., Cleveland, OH). The fluorescent staining was vi- 
sualized using a confocal microscope (Bio Rad Laboratories, Hercules, CA). 

3H-Fatty Acid Labelings 
HeLa cells were transfected with the indicated DNA constructs in tripli- 
cate. 5-6 h later, cells were incubated in media containing 100-300 mCi/ml 
of [9,10-3H]myristate (33.5 Ci/mmol) or [9,10-3H]palmitate (60 Ci/mmol) for 
1-2 h at 37°C. The ceils were lysed in a detergent buffer containing 1% 
NP-40, 0.4% CHAPS (Pierce Chemical Co., Rockford, IL), 1% sodium 
deoxycholate (Sigma), 25 mM Tris, pH 6.8, 25 mM NaF, 150 mM NaC1, 
100 mM sodium orthovanadate, and the protease inhibitor aprotinin (20 
p.g/ml; Sigma). Immunoprecipitates were prepared from postnuclear su- 
pernatants using a polyclonal antiserum to p59 ry". The 3H-labeled proteins 
were detected by fluorography of SDS-polyacrylamide gels treated with 
2,5 diphenyl-oxazole (PPO). 

3H-Fatty Acid Analysis 
Radioactive fatty acids liberated by alkaline hydrolysis of the p59 fyn pro- 
teins were analyzed as described (Linder et al., 1993) with minor modifica- 
tions. Proteins in a polyacrylamide gel slice were hydrolyzed with 1.5 M 
NaOH, and fatty acids were extracted with chloroform/methanol. After 
the addition of 50 mg of palmitic acid as a carrier, extracted fatty acids 
were analyzed by HPLC on a Beckman; Ultrasphere ClS reversed-phase 
column with acetonitrile/0.1% trifluoroacetic acid (80:20) (Beckman In- 
strs., Palo Alto, CA). Fatty acids were also analyzed by TLC on Cls re- 
versed-phase plates (Whatman, Clifton, NJ) with acetonitrile/acetic acid 
(90:10) as the mobile phase. 
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P o s i t i o n  

~n M G O V Q G K O K E  

Ick M G C V C S S N P E  
l yn  M G C I  K S K G K D  
~ s  MGCI KSKENK 

r M G C V F C K K L E  
h c k  M G C M K S K F L Q  

b l k  M G L L S S K R Q V  
s m  M G S S K S K P K D  

substitution 

C3A - - A . . . . . . .  

V4A - - - A . . . . . .  

Q 5 A  . . . .  A . . . . .  
C 6 A  . . . . .  A . . . .  
K 7 A  . . . . . .  A -  - - 
D S A  . . . . . . .  A -  - 
K 9 A  . . . . . . . .  A -  
E I O A  . . . . . . . . .  A 

Figure 1. Analysis of the amino-ter- 
minal residues of p59 ry". (A) Compar- 
ison of the amino-terminal residues 
of src family kinases. (B) Diagram of 
p59rY, proteins containing single 
amino acid substitutions. The amino- 
terminal residues of p59 fy~ are indi- 
cated. The position of each amino 
acid is designated numerically from 
the initiator methionine. A series of 
nine p599" proteins was generated, 
each of which contains an alanine 
substitution at the indicated position. 
The mutated proteins are designated 
by the amino acid present in p59 fy", 
the position of the residue, and the 
amino acid substituted. Amino acids 
are indicated using the single-letter 
code. 

Results 

Determination o f  Critical Residues o f  p59CY" for Binding 
to TCR Proteins 

We previously demonstrated that p59 fy" associates with 
multiple TCR subunits. All these subunits contain a signal- 
ing motif known as the ITAM, and we showed that p59fY, 
interacts directly with the ITAM (Gauen et al., 1994). This 
interaction is specific for p59 ry~ because two highly related 
src family kinases, p561ok and p60 ~rc, did not bind to the chi- 
meric TCR proteins. Mapping studies revealed that a small 
region of p59 ryn known as the SH4 domain is responsible 
for this binding (Gauen et al., 1992). This was surprising 
because a comparison of this region between other src fam- 
ily kinases (Resh, 1993) demonstrates that many of these 
residues are shared (Fig. 1 A). We were therefore inter- 
ested in determining the unique features of the p59 ry~ SH4 
domain that are responsible for its ability to bind to TCR 
proteins. 

To investigate which amino acids are responsible for 
binding specificity, nine mutated p59 fy" proteins contain- 
ing single alanine substitutions were generated (depicted 
in Fig. 1 B). These proteins were tagged at the carboxy ter- 
minus with a myc epitope that is recognized by the 9E10 
mAb (Evan and Bishop, 1985). This allowed immunopre- 
cipitation and immunoblotting of the mutated proteins 
without recognizing endogenous p59rY". All of the mutated 
p59 ry~ proteins demonstrated apparent wild-type levels of 
kinase activity (data not shown). Each of the proteins was 
then tested for its ability to associate with chimeric TCR 
proteins after transient expression in HeLa  cells. For these 
experiments, we used a chimeric TCR protein, Ge, which 
contains the extracellular domain of the VSV G fused to 
the cytoplasmic domain of CD3~. Association of p59~, 
with the chimeric TCR protein was assessed by measuring 
the presence of kinase activity in VSV G immunoprecipi- 
tates in vitro. As reported previously, in vitro kinase reac- 
tions from cells coexpressing p59 ry" and Ge result in phos- 
phorylated proteins migrating with apparent molecular 
mobilities of 75 and 65 kD, representing phosphorylated 
Ge and p59 ry', respectively (Gauen et al., 1992, and Fig. 2 
A, lane 1). We also reported previously that this binding is 

Figure 2. Association of mutated p59 ry" proteins with Ge. (A) In 
vitro kinase reactions of VSV G immnnoprecipitations. HeLa 
cells were cotransfected with Ge and the indicated p59 fy" con- 
structs (lanes 1-14). VSV G immunoprecipitates were prepared 
from the cell lysates using the I1 mAb. Coprecipitating kinase ac- 
tivity was detected by in vitro kinase reactions. The 32p-labeled 
proteins were electrophoretically separated on SDS-polyacryl- 
amide gels and detected by autoradiography. (B and C) VSV and 
p59 ry" or myc epitope immunoblots. Lysates were prepared from 
duplicate cultures of HeLa cells as indicated in A. Proteins were 
separated by SDS-PAGE and transferred to nitrocellulose filters. 
The filters were incubated with a rabbit polyclonal antiserum to 
VSV (B), a rabbit polyclonai antiserum to p59 fyn (C, lanes 1-10 
and 13-14), or an mAb to the myc epitope tag (C, lanes 11 and 12). 
The filters were washed and incubated with an HRP-conjugated 
goat anti-rabbit antibody and developed using chemilumines- 
cence reagents. The positions of the Ge (75 kD) and p59b" (65 kD) 
proteins are indicated. 

not caused by nonspecific interactions with the VSV G an- 
tibody and that it requires the presence of the ITAM sig- 
naling motif in the cytoplasmic domain of Ge (Gauen et 
al., 1992, 1994). Little or no kinase activity was detected in 
the VSV G immunoprecipitates from cells that coexpress 
G~ with the G2A or C3A proteins (Fig. 2 A, lanes 2 and 3). 
The remainder of the p59 fyn proteins retained the ability to 
bind G~ (Fig. 2 A, lanes 4-10). Identical results were ob- 
tained when a fusion protein containing the cytoplasmic 
domain of another TCR subunit, G~ (Gauen et al., 1992), 
was used (data not shown). Immunoblotting of whole-cell 
lysates with antibodies to VSV and p59 fyn demonstrated 
that all of the proteins were highly expressed (Fig. 2, B and 
C, lanes 1-10), confirming that the inability of G2A and 
C3A to associate with Ge was not caused by lower levels 
of expression. We were concerned that the detection of 
K7A kinase activity coprecipitating with Ge was caused by 
higher levels of K7A expression. Even when K7A was ex- 
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pressed at levels lower than p59fYn, however, coprecipitat- 
ing kinase activity was observed (data not shown). These 
data confirmed that K7A can bind Ge as efficiently as 
p59fY~. Therefore, only Gly2 and Cys3 appeared to be the 
critical residues for binding. 

Basic Residues and Gly2 and Cys3 within the SH4 
Domain Provide the Specificity for p59fyn Binding to 
the ITAM 

Our data pointed to two residues of the p59 fy~ SH4 do- 
main, Gly2 and Cys3, as the critical residues for binding. 
p56 lck, which also contains these two residues, however, does 
not bind directly to the TCR. Comparisons of the SH4 do- 
mains of src family kinases (Fig. 1 A) show that key features 
of the p59 ry~ SH4 domain are lysines at positions 7 and 9 
and a cysteine residue at position 3. In contrast, the p56 tck 
SH4 domain does not contain any lysine residues and the 
SH4 domain of p60 ~'~ (which also cannot bind the TCR) 
lacks Cys3. Therefore, it was possible that the combination 
of Cys3 in the presence of Lys7 and Lys9 was responsible 
for the unique ability of the p59 ~ SH4 domain to bind to 
TCR subunits. To test this hypothesis, we substituted a 
cysteine residue for Ser3 in the srcl0/fyn protein, where 
the SH4 domain of p60 sr~ had been substituted for that of 
p59 rye. The srcl0/Cys3 protein was able to associate with Ge 
as efficiently as p59 fy~, whereas srcl0/Ser3 was unable to 
associate (Fig. 2 A, lanes 11 and 12 and data not shown). 
Immunoblotting confirmed that all of the proteins were 
similarly expressed (Fig. 2, B and C, lanes 11 and 12). To 
test whether the presence of dual lysines at positions 7 and 
9 were also critical for binding, we substituted alanines at 
both positions in p59 ryn (K7,9A). Although K7,9A was ex- 
pressed at comparable levels to p59 fy~ (Fig. 2 C, lanes 13 
and 14), the loss of both lysines greatly reduced binding to 
Ge (Fig. 2 A, lanes 13 and 14). Therefore, the combination 
of Cys3 with Lys7 and Lys9 in the SH4 domain of p59 fyn is 
responsible for its unique ability to direct binding to TCR 
subunits. These data suggest that the failure of p56 tck to 
bind TCR proteins is caused by the lack of two lysine resi- 
dues in its SH4 domain. 

Fatty Acylation of p59 ¢yn Proteins 

All src family kinases are N-myristoylated at Gly2, and 
with the exception of p55 btk and p60 ~rc, may be palmitoy- 
lated at neighboring cysteine residues (Paige et al., 1993; 
Koegl et al., 1994; Resh, 1994). The observation that resi- 
dues of p59 ryn critical for binding to chimeric TCR proteins 
are potential sites for fatty acylation led us to characterize 
the acylation status of the panel of mutated p59 fyn pro- 
teins. To confirm that the myc epitope-tagged p59 fr~ ex- 
pressed in our system was palmitoylated, HeLa cells ex- 
pressing this protein were incubated with radioactive 
palmitate. Radioactivity derived from [3H]palmitate was 
incorporated into epitope-tagged p59 fyn, but not into 
epitope-tagged srcl0/fyn (Fig. 3 A, lanes 1 and 2), which 
lacks cysteine residues within the SH4 domain and is not 
palmitoylated (Alland et al., 1994; Shenoy-Scaria et al., 
1994). Immunoblotting of whole-cell lysates confirmed 
that both proteins were expressed at high levels (Fig. 3 A, 
lanes 3 and 4). These results suggest that the epitope- 
tagged p59 fy~ expressed in our system is palmitoylated. 

Figure 3. Incorporation of [3H]palmitate into p59-Vn proteins in 
HeLa cells. (A) HeLa cells transfected with a cDNA encoding 
myc epitope-tagged p59 ryn (lanes 1 and 3) or myc epitope-tagged 
srcl0/fyn (lanes 2 and 4) were incubated with [3H]palmitate. 
p59 fyn immunoprecipitates were prepared from cell lysates and 
separated by SDS-PAGE. [3H]Palmitate incorporation was de- 
tected by fluorography (lanes 1 and 2). A portion of each lysate 
was analyzed by immunoblotting with antisera to p59 fyn (lanes 3 
and 4 ), as described in Fig. 2 C. (B) Reversed-phase chromatog- 
raphy of fatty acids hydrolyzed from radiolabeled myc epitope- 
tagged p59fY- and srcl0/fyn. Immunoprecipitates of p59 fyn pro- 
teins from transfected HeLa cells were resolved by SDS-PAGE. 
Gel slices containing p59 fyn or srcl0/fyn were excised and sub- 
jected to base hydrolysis. Extracts of the hydrolysates were chro- 
matographed over a C18 reversed-phase column, and radioactive 
fatty acids were detected by scintillation counting. Elution pro- 
files of the p59 fyn extracts (open squares) and the srcl0/fyn ex- 
tracts (closed circles) are depicted; the positions of the myristate 
(C14:0), palmitate (C16:0), and stearate (C18:0) standards are in- 
dicated by arrows. 

To establish that the radioactivity incorporated into the 
protein was authentic thioester-linked palmitate, radioac- 
tive fatty acids were released from the proteins by alkaline 
hydrolysis and analyzed by HPLC. Almost all the radioac- 
tivity extracted from p59 fyn (Fig. 3 B, open squares) comi- 
grated with the palmitate standard (Fig. 3 B, fractions 19-21). 
Base hydrolysates resolved by reversed-phase TLC gave 
identical results (data not shown). No significant radioac- 
tivity was extracted from srcl0/fyn (Fig. 3 B, closed cir- 
cles). Thus, noncovalently associated radioactivity was not 
carried through the immunoprecipitation and extraction pro- 
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Figure 4. 3H-fatty acid labeling of p59 ryn proteins. (A) [3H]Myr- 
istate and [3H]palmitate labeling of myc epitope-tagged p59 B~ 
proteins. HeLa cells were transfected with the indicated DNA 
constructs and incubated with [3H]myristate (lanes 1--4) or 
[3H]palmitate (lanes 5-12). The incorporated radioactivity was 
detected in p59 ryn immunoprecipitates by SDS-PAGE and fluo- 
rography. (B) Immunoblotting of p59 yyn immunoprecipitates 
from A. A portion of each immunoprecipitate from the [3H]myr- 
istate-labeled cells (lanes 1-4) or from the [3H]palmitate-labeled 
cells (lanes 5-12) was resolved by SDS-PAGE. The proteins were 
transferred to nitrocellulose filters and incubated with a biotiny- 
lated mAb (9El0) to the myc epitope tag (lanes 1-11) or with 
p59/yn antisera (lane 12). The filters were developed using HRP- 
conjugated streptavidin (lanes 1-11) or HRP-conjugated goat 
anti-rabbit antibodies (lane 12) and chemiluminescence reagents. 

cedures. These data demonstrate that the radioactivity in- 
corporated into p59 fy~ was in fact palmitate and did not 
arise from metabolically interconverted myristate. 

To determine whether there was a correlation between 
fatty acylation and the ability to bind TCR subunits, the 
mutated p59 ry~ proteins were tested for metabolic incorpo- 
ration of [3H]myristate and [3H]palmitate (Fig. 4 A, lanes 
1-4 and 5-12, respectively). Immunoprecipitates were an- 
alyzed by SDS-PAGE and fluorography. As expected, 
p59rY~ and C3A were labeled after [3H]myristate incuba- 
tion, whereas no labeling was observed for G2A, which 
lacks the site of myristate attachment (Fig. 4 A, lanes 1-3). 
K7A also incorporated [3H]myristate, suggesting that un- 
like for p60 ..... (Kaplan et al., 1988), Lys7 is not absolutely 
required for myristoylation of p59 fyn (Fig. 4 A, lane 4). Al- 
though immunoblotting of the immunoprecipitates dem- 
onstrated that all proteins were efficiently immunoprecipi- 
tated, K7A was expressed at higher levels than p59 fyn. 
Because the amount of [3H]myristate incorporated into 
K7A was equal to or less than wild-type p59 ry" (compare 
Fig. 4 A, lanes I and 4 ,  and B, lanes 1 and 4), myristoyla- 
tion of K7A is not as efficient as the wild type. Thus, the 
presence of Lys7 may enhance the ability of p59 fy~ to be 
myristoylated. 

Metabolic incorporation of [3H]palmitate revealed effi- 
cient labeling of the p59 fy~, C6A, K7A, srcl0/cys3, and 
K7,9A proteins, with no labeling of the G2A protein (Fig. 
4 A, lanes 5-12). Greatly reduced labeling of the C3A pro- 

Figure 5. Fractionation of HeLa cells expressing p59fY" proteins. 
HeLa cells were transfected with the indicated p59 ryn constructs 
and homogenized in hypotonic buffer. The postnuclear superna- 
rants were layered over a sucrose cushion and centrifuged at 
200,000 g for 30 rain. The pellet (p) and supernatant (s) fractions 
were adjusted to equivalent volumes. Equal portions of each frac- 
tion were separated by SDS-PAGE, transferred to nitrocellulose, 
and blotted with antiserum to p59 fyn. The positions of the p59fYn 
proteins are indicated. The results shown are representative of six 
independent experiments. 

tein was observed (Fig. 4 A, lane 7), suggesting that al- 
though Cys3 is the primary site of p59 ~ palmitoylation, 
Cys6 is also palmitoylated to a low degree. HPLC analysis 
of fatty acids hydrolyzed from C3A confirmed that the ra- 
dioactivity incorporated into the protein was thioester- 
linked [3H]palmitate (data not shown). Since all the p59 ry" 
proteins that can bind the TCR were labeled with radioac- 
tive palmitate, palmitoylation is probably required for bind- 
ing. It is not sufficient by itself because K7,9A, which la- 
beled with radioactive palmitate, is not capable of binding 
to the TCR. 

Membrane Stability and SubceUular Localization o f  
p59fyn Proteins 

To determine if the ability of the mutated p59fYn proteins 
to bind TCR proteins correlated with their ability to asso- 
ciate with membranes, the membrane stability of p59 fyn 
and the p59 ~n proteins containing substitutions within the 
SH4 domain were studied using cellular fractionation. 
Crude membrane and cytoplasmic fractions were pre- 
pared from HeLa cells that expressed each protein. Pro- 
teins were separated by SDS-PAGE, transferred to nitro- 
cellulose, and immunoblotted. As expected, most of the 
p59 fyn protein (70°90%) was recovered in the membrane 
fraction (Fig. 5, lanes 1 and 2), and most of the G2A pro- 
tein was recovered in the cytoplasmic fraction (80090%, 
Fig. 5, lanes 3 and 4). The presence of the myc epitope tag 
or alanine substitutions in the V4A, Q5A, D8A, and K9A 
proteins did not alter the percentage of p59 fyn molecules 
that were recovered in the membrane fraction (data not 
shown). Interestingly, the K7,9A protein was primarily in 
the cytoplasmic fraction, with ~10020% of the protein lo- 
cated in the membrane fraction (Fig. 5, lanes 11 and 12). 
The C3A, C6A, and K7A proteins showed a more modest 
redistribution, with N40050, 50--60, and 20030% of the 
protein located in the membrane fraction, respectively 
(Fig. 5, lanes 5-10). Thus, the membrane stability of the 
mutated p59 fyn proteins did not absolutely reflect their 
ability to bind TCR subunits. 

It was possible that the restribution of some of the mu- 
tated proteins to the cytosolic fraction was an artifact of 
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Figure 6. Confocal microscopy of HeLa cells expressing p59 #n proteins. HeLa cells were transfected with the p59 fy" (A), the myc 
epitope-tagged p59 ry" (B), fynY531F (C), mock-transfected (D), G2A (E), C3A (F), C6A (G), K7A (H), or K7,9A (/) DNA constructs. 
The cells were fixed in 3% paraformaldehyde and permeabilized. Cells were then incubated with an mAb antibody to p59 #" (IS; A, C, 
and/), or to the myc epitope tag (9El0; B, D, and E-H), followed by a fluorescein-conjugated goat anti-mouse secondary antibody. Im- 
munofluorescent staining was visualized using confocal microscopy. The images shown are typical of the staining pattern seen in trans- 
fected cells from four independent experiments. No differences were observed for cells expressing the myc epitope-tagged p59 fy" pro- 
tein when stained with the IS or 9El0 antibodies (data not shown). 

the cell fractionation procedure. Thus, to confirm the sub- 
cellular localization of the mutated proteins, confocal mi- 
croscopy was performed. Cells expressing each protein 
were fixed with 3% paraformaldehyde, permeabilized, and 
stained with mAbs to p59 ryn or to the myc epitope tag. 
Both p59 ry" and the epitope-tagged p59~" protein demon- 
strated plasma membrane and bright, punctate staining 
throughout the cell (Fig. 6, A and B), demonstrating that 
the epitope tag did not alter the subcellular localization of 
p59fY". As an additional control, a constitutively active form 
of p59 ry" in which the regulatory tyrosine at position 531 
was changed to a phenylalanine was also examined. This 
protein demonstrated similar staining to both p59 fy" and 
the epitope-tagged p59 fr" protein (Fig. 6 C). The V4A, 
Q5A, D8A, and K9A proteins were localized similarly to 
wild-type p59 ryn (data not shown), whereas mock-trans- 
fected cells demonstrated no staining for either antibody 
(Fig. 6 D; data not shown). Examination of cells express- 
ing G2A or K7,9A showed no plasma membrane staining, 

with only cytoplasmic and nuclear staining (Fig. 6, E and/).  
Minimal plasma membrane staining was observed for cells 
expressing C3A. Instead, punctate and bright perinuclear 
staining was apparent (Fig. 6 F). The lack of Cys3 appar- 
ently causes a significant reduction in plasma membrane 
localization with a relocalization of p59#- to intracellular 
membranes. Therefore, the C3A protein detected in the 
membrane pellets by cellular fractionation (Fig. 5, lane 5) 
was probably associated with intracellular membranes. In 
contrast, C6A and K7A, which both had reduced mem- 
brane association by cellular fractionation, demonstrated 
clear plasma membrane staining in addition to perinuclear 
staining (Fig. 6, G and H). This suggests that mutations of 
the cysteine at position 6 or the lysine at position 7 have 
reduced the membrane stability of p59fY", but did not com- 
pletely abrogate plasma membrane targeting. Both fatty 
acylation and basic residues are therefore impoi'tant for 
plasma membrane targeting of p59 fy". Furthermore, only 
mutations of residues that were critical for binding of 
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p59 tyn to TCR proteins (Gly2, Cys3, and Lys7 + Lys9) re- 
sulted in a loss of plasma membrane targeting. Thus, a 
combination of Gly2, Cys3, and basic residues in the p59 fyn 
SH4 domain directs its efficient targeting to the plasma 
membrane and allows its binding to the TCR. 

Discussion 

Critical in the initiation of antigen-receptor signal trans- 
duction is the phosphorylation of a conserved signaling 
motif known as the ITAM that is found in the conserved 
components of the T cell antigen receptor, the B cell anti- 
gen receptor, the high affinity IgE receptor, and the low 
affinity IgG receptor, CD16. Although the exact mecha- 
nism is not known, phosphorylation of the ITAM is thought 
to be mediated by src family kinases, either directly associ- 
ated with the ITAM or recruited into the receptor com- 
plex via the association of src kinases with accessory or 
coreceptor proteins. Even though members of the src fam- 
ily of kinases are highly related, only two src family ki- 
nases have been shown to directly bind to the ITAM, 
p59 fy~, and p56 lyn (Clark et al., 1992; Gauen et al., 1992; 
Pleiman et al., 1994). p59 fy~ is expressed in T and B cells 
and associates with both the T cell and B cell antigen re- 
ceptors (Samelson et al., 1990; Gassmann et al., 1992; 
Clark et al., 1992). p56 lyn is expressed in B cells and mast 
cells, and has been shown to bind to the B cell antigen re- 
ceptor as well as to the IgE receptor (Clark et al., 1992; 
Jouvin et al., 1994). For the last several years, we have fo- 
cused on defining what mediates the specificity of these in- 
teractions. 

We previously demonstrated that the SH4 domain of 
p59 fyn confers its specific binding to TCR and BCR ITAMs 
(Gauen et al., 1992; Pleiman et al., 1994). In this study, we 
identified the critical features of the p59 fyn SH4 domain 
that are required for this binding. We tested a panel of mu- 
tated p59 fvn proteins with alanine substitutions for each 
residue in the SH4 domain. Surprisingly, we found that 
only the glycine residue at position two and the cysteine 
residue at position three were critical for binding. Al- 
though these residues were necessary for TCR binding, 
they are not sufficient because p56 lck, which cannot bind 
the TCR (Gauen et al., 1992), also contains a glycine at po- 
sition two and a cysteine at position three. This suggested 
that additional residues in the SH4 domain are important 
for p59fYn interactions with the TCR. Further mutagenesis 
demonstrated that two lysine residues at positions 7 and 9 
of p59 fyn, which are not present in p56 tck, were also critical 
(Fig. 1 A). Although mutation of either lysine alone had 
little or no effect on TCR binding, mutation of both resi- 
dues together completely abrogated TCR binding. Our re- 
sults suggest that three features of the p59 tyn SH4 domain 
are critical for binding to the ITAM: myristoylation, palmi- 
toylation, and basic residues in positions 7 and 9. The only 
other src kinase that contains all three of these features is 
p56 tyn. Since p56 tyn is the only other src kinase that is 
known to bind to the ITAM sequence, the features that we 
have defined are likely to constitute a specific binding mo- 
tif for ITAMs. It is possible that other src family members 
whose SH4 domains have sites for palmitoylation and ba- 
sic residues will be capable of binding to ITAMs. 

It is still possible that the site of palmitoylation of p59 fen 

and p56 lck is distinct and that this accounts for differential 
binding to the ITAM. p56 leg is known to be palmitoylated, 
but the site of palmitoylation is uncertain. It was reported 
that cysteine 5, cysteine 3, or most recently, both cysteines 
3 and 5 are the primary sites of palmitoylation in vivo 
(Rodgers et al., 1994; Shenoy-Scaria et al., 1994; Yurchak 
and Sefton, 1995). Thus, it is conceivable that the position 
of the palmitate and/or possibly the number of palmitates 
(one versus two) precludes the ability of p56 tog to bind to 
the TCR. Other src family members are known to be 
palmitoylated (Shenoy-Scaria et al., 1994), however, and 
do not bind the ITAM. It seems more likely that the in- 
ability of p56 t~k to bind results from the lack of the lysine 
residues rather than from the position of the palmitate. 

It is interesting that the mutated p59 #n protein lacking 
Cys3 was localized only to intracellular membranes. This 
result suggests that palmitoylation is not required for mem- 
brane binding per se, but may play a role in intraeellular 
transport or in the plasma membrane localization of p59 fyn. 
For example, palmitoylation of p59fYn may be required for 
exit of p59 ¢yn from intracellular membranes, or it may be 
required to stabilize the binding of p59 fyn to plasma mem- 
branes. Since the lipid composition of different cellular mem- 
branes is distinct, it is interesting to speculate that fatty 
acylation of initially soluble proteins might be critical for 
their ability to associate with a specific membrane. For 
example, as the cholesterol content of the membrane in- 
creases in the Golgi and plasma membrane, the lipid bilayer 
becomes more rigid and thickens, favoring the incorpora- 
tion of longer chain hydrocarbons (reviewed in Bretscher 
and Munro, 1993). Another difference in membranes reg- 
ulating p59 fyn binding might be the composition of phos- 
pholipids. The presence of basic residues or dual fatty acy- 
lation significantly enhances the binding of peptides to 
acidic phospholipids versus neutral phospholipids (Sigal et 
al., 1994; Shahinian and Silvius, 1995). Differences in the 
acidic phospholipid composition of plasma membranes 
might therefore favor the requirement for myristate (C14:0), 
palmitate (C16:0) and basic residues. Thus, based on phys- 
ical properties, fatty acylation of p59/w could regulate its 
ability to associate with Golgi or plasma membranes. In- 
deed, it was reported that the primary cellular localization 
of endogenous p59 fy" in Jurkat cells and mitogen stimu- 
lated peripheral blood T cells was intracellular (Ley et al., 
1994). This might reflect a pool of p59 ~n molecules that is 
not palmitoylated. Regulation of fatty acylation could 
therefore serve to dictate when p59fY" is transported from 
internal membranes to the plasma membrane. This could 
be important in regulating the assembly of p59 ryn with the 
TCR or to regulate the stoichiometry of such complexes at 
the plasma membrane. 

Given that dually acylated peptides bind tightly to mem- 
branes (Sigal et al., 1994; Shahinian and Silvius, 1995), it 
was surprising that the K7,9A mutant that was palmitoy- 
lated and presumably myristoylated was found to be cyto- 
solic both by cell fractionation and by confocal micros- 
copy. The simplest explanation is that the requirements 
for membrane stability of a 50--60-kD protein differ from 
the requirements of small peptides. More likely, we sus- 
pect that it reflects a low stoichiometry of myristoylation 
and palmitoylation of the K7,9 protein. Given the high lev- 
els of expression of K7A and K7,9A achieved in our ex- 
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periments, the level of myristate and palmitate labeling 
suggests that the incorporation of fatty acids was less effi- 
cient than for wild-type p59~n. Our localization studies 
may reflect a large portion of the molecules that are not 
dually modified. We also consistently noted that accumu- 
lated protein expression of the G2A, K7A, and K7,9A 
proteins was substantially greater than the other mutated 
or wild-type p59fyn proteins. Myristoylation might be a 
rate-limiting step in the biosynthesis of these proteins. 

Fatty acylation of proteins enhances their ability to bind 
membranes, but may have other functions. It is clear that 
covalent lipid modifications are implicated in the specific- 
ity of a growing number of protein-protein interactions 
(Linder et al., 1991; Pitcher et al., 1992; Kokame et al., 
1992; Kuroda et al., 1993). This has been demonstrated in 
studies of subunit association of heterotrimeric G proteins. 
Myristoylation of purified recombinant Go~ increases its 
affinity for binding to 13~/subunits (Linder, et al., 1991). 
Similarly, myristoylation and palmitoylation of p59 fvn may 
increase its affinity for binding to TCR subunits. A direct 
test of the role of palmitate in facilitating binding of p59 fyn 
to TCR proteins awaits the reconstitution of binding using 
purified components. 

Intriguingly, palmitoylation is a modification that can be 
dynamically modulated by extracellular signals. Recently, 
it was demonstrated that palmitoylation of a G protein a 
subunit is modulated by treatment of cells with 13-adrener- 
gic receptor agonists (Degtyarev et al., 1993; Mumby et al., 
1994; Wedegaertner and Bourne, 1994). If palmitoylation 
facilitates protein-protein interactions, cycles of acylation 
and deacylation could have an important regulatory role 
in many signaling pathways. Based on the data presented 
here, the modulation of p59 fyn palmitoylation could have 
an important role in enhancing or desensitizing TCR sig- 
naling by enhancing or inhibiting p59 fy~ association with 
the TCR. It will be interesting to determine whether sig- 
naling by the TCR can modulate the palmitoylation state 
of p59  fyn. 
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