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Introduction
Natural killer (NK) cell activation is regulated by a balance be-

tween activating and inhibitory cell surface receptors (Vivier 

et al., 2004; Lanier, 2005b). Consistent with the missing self 

 hypothesis (Ljunggren and Karre, 1990; Karre et al., 2005; 

Lanier, 2005a), NK cell cytotoxicity can be inhibited by engage-

ment of inhibitory receptors specifi c for major histocompatibil-

ity complex (MHC) class I proteins, including killer Ig–like 

receptors (KIRs; Karlhofer et al., 1992; Yokoyama and Seaman, 

1993; Colonna and Samaridis, 1995; Wagtmann et al., 1995). 

Initiation of the inhibitory signal upon ligand binding requires 

the phosphorylation of two tyrosine residues within immun o-

receptor tyrosine-based inhibition motifs (ITIMs) in the cytoplas-

mic domain. These phosphorylated tyrosines act as a recruitment 

site for SH2 domain–containing tyrosine phosphatases, includ-

ing Src homology protein tyrosine phosphatase (SHP) 1 or 2 

 (Burshtyn et al., 1996; Fry et al., 1996; Olcese et al., 1996; 

 Burshtyn et al., 1999). Several signaling molecules involved in NK 

cell activation can be targets for SHP-1– and SHP-2–mediated 

dephosphorylation, including Zap70, Syk, PLCγ, LAT, and 

SLP76 (for review see Veillette et al., 2002). However, using a 

transfectant of YTS expressing KIR2DL1 fused to a substrate-

trapping mutant of SHP-1, a guanine nucleotide exchange factor 

that  regulates the actin cytoskeleton, Vav-1, was the only protein 

detected as a direct substrate for SHP-1 (Stebbins et al., 2003). 

Downstream, inhibitory KIR2DL1 signaling prevents the assembly

of a large complex of cytoskeletal-linked proteins required for 

cytotoxicity (Krzewski et al., 2006).

KIR phosphorylation after engagement of MHC class I 

protein on target cells has proved diffi cult to detect biochemically 

and has in some cases required addition of a phosphatase inhibi-

tor, pervanadate, to facilitate its detection (Faure et al., 2003). 

The most likely explanation for this is that only a small fraction 
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W
e report the supramolecular organization of 

killer Ig–like receptor (KIR) phosphorylation 

using a technique applicable to imaging 

phosphorylation of any green fl uorescent protein–tagged 

receptor at an intercellular contact or immune synapse. 

Specifi cally, we use fl uorescence lifetime imaging (FLIM) 

to report Förster resonance energy transfer (FRET) be-

tween GFP-tagged KIR2DL1 and a Cy3-tagged generic 

anti-phosphotyrosine monoclonal antibody. Visualization 

of KIR phosphorylation in natural killer (NK) cells contact-

ing target cells expressing cognate major histocompati-

bility complex class I proteins revealed that inhibitory 

signaling is spatially restricted to the immune synapse. 

This explains how NK cells respond appropriately when 

simultaneously surveying susceptible and resistant target 

cells. More surprising, phosphorylated KIR was confi ned 

to microclusters within the aggregate of KIR, contrary to 

an expected homogeneous distribution of KIR signaling 

across the immune synapse. Also, yellow fl uorescent 

protein–tagged Lck, a kinase important for KIR phos-

phorylation, accumulated in a multifocal distribution at 

inhibitory synapses. Spatial confi nement of receptor 

phosphorylation within the immune synapse may be crit-

ical to how activating and inhibitory signals are inte-

grated in NK cells.
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of KIR is phosphorylated at any given moment. Thus, determining 

where and when inhibitory KIR signaling occurs is an essential 

next stage toward understanding how the balance of activating 

and inhibitory signals is assessed during NK cell surveillance.

KIR and their corresponding MHC class I ligands, as well 

as many other receptor/ligand pairs, have been shown to cluster 

at the immunological synapse (IS) between NK cells and other 

cells (Davis et al., 1999; Carlin et al., 2001; Vyas et al., 2001, 

2002; Orange et al., 2003; Borg et al., 2004). However, whether 

there is an importance in the segregation and patterning of pro-

teins at an inhibitory NK cell IS, e.g., in infl uencing downstream 

signaling, remains unclear (Davis and Dustin, 2004). We set out 

to determine the supramolecular organization of the fi rst step in 

inhibitory  receptor signaling, phosphorylation of the cytoplas-

mic ITIMs of KIR2DL1. Förster resonance energy transfer 

(FRET) involves the nonradiative transfer of energy from an 

 excited donor fl uorophore to a nearby acceptor and can be used 

to detect macromolecular associations within cells on the nano-

meter scale (Wu and Brand, 1994). Here, we image KIR phos-

phorylation at the NK cell IS  using fl uorescence lifetime 

imaging (FLIM) to report FRET. Rather than a small fraction of 

KIR  being phosphorylated homogeneously across the IS, we 

unexpectedly observed that KIR phosphorylation is spatially 

restricted to discrete domains or microclusters within the IS.

Results
Imaging KIR phosphorylation 
at the inhibitory NK cell IS
To visualize KIR signaling, we used a generic anti-phosphoty-

rosine mAb labeled with Cy3 as the acceptor for FRET from the 

donor GFP tagged to the cytoplasmic portion of the NK inhibitory 

receptor KIR2DL1. FRET will only be detected if the spatial 

 separation of GFP and Cy3 fl uorophores is no more than 9 nm 

(Ng et al., 1999); thus, FRET will occur only when the anti-

 phosphotyrosine mAb is extremely close, i.e., bound, to KIR2DL1-

GFP. The most robust way to detect FRET is through detecting a 

decrease in the fl uorescence lifetime, τ, of the donor fl uorophore, 

in this case, GFP (Bastiaens and Squire, 1999). Hence, KIR phos-

phorylation at the NK cell IS can be detected by comparing the 

fl uorescence lifetime of GFP-tagged KIR2DL1 in unstained cell 

conjugates (donor only [D]) with the fl uorescence lifetime of GFP-

tagged KIR2DL1 in conjugates stained with Cy3-labeled anti-

phosphotyrosine (donor in the presence of acceptor [DA]; Fig. 1).

An accumulation of KIR2DL1-GFP and phosphotyrosine 

is clearly visible at the IS between YTS/KIR2DL1-GFP and 

221/Cw6. The fl uorescence lifetime of GFP is reduced in sam-

ples stained with anti-phosphotyrosine compared with unstained 

samples (Fig. 1 A). The mean fl uorescence lifetime where KIR 

clustered at the IS in conjugates stained for phosphotyrosine 

(DA) was 5–10% lower than unstained control cells (D; Fig. 1 F). 

The fl uorescence lifetime of GFP was not reduced in anti-

 phosphotyrosine–stained samples of YTS/KIR2DL1-GFP and 

221/Cw3 that express a class I MHC protein not recognized by 

KIR2DL1 (unpublished data).

However, KIR2DL1 does not cluster at these synapses 

with target cells lacking a cognate MHC ligand. Thus, to further 

test whether the observed decrease in GFP fl uorescence lifetime 

at the IS between YTS/KIR2DL1-GFP and 221/Cw6 specifi -

cally reported KIR phosphorylation, a transfectant expressing a 

truncated ITIM-less KIR2DL1-GFP (YTS-TR) was used, where 

GFP was placed just upstream of the membrane-proximal 

ITIM and the rest of the KIR cytoplasmic tail deleted. Trun-

cated KIR2DL1-GFP still clustered at the IS with target cells 

expressing cognate MHC protein (Fig. 1 B). Thus, signaling 

through ITIMs, or any other possible signaling motifs, in the 

cytoplasmic tail of KIR is not absolutely required to cluster KIR 

at the IS, consistent with previous observations (Fassett et al., 

2001; Standeven et al., 2004).

There was clearly anti-phosphotyrosine staining at the syn-

apse involving YTS expressing truncated KIR2DL1, as expected 

because KIR is not the only protein to be phosphorylated at a 

synapse, and indeed the lack of KIR signaling would allow a cy-

tolytic synapse to persist. However, FRET could not be  detected 

at the IS despite truncated KIR2DL1-GFP being clustered at 

the IS, where phosphotyrosine is also present (Fig. 1, B and F). 

To control for the possibility that our methodology would be 

sensitive to phosphorylated proteins that might  associate with 

the cytoplasmic tail independently of ITIM  phosphorylation, 

we also used a transfectant expressing KIR2DL1-GFP (Y281F, 

Y311F), in which the two ITIM tyrosines had been specifi cally 

altered to phenylalanine. Again, FRET could not be detected 

in synapses involving transfectants expressing this point-

mutated ITIM-less KIR2DL1-GFP (Fig. 1, C and F), despite this 

receptor being clustered at the IS, where phosphotyrosine is 

also present.

Together, these controls confi rm that our methodology ac-

curately reveals the phosphorylation of KIR2DL1 at the IS and 

does not report on other phosphorylated proteins that might hap-

pen to be in close proximity to KIR2DL1 nor on any proteins 

that might be bound to the cytoplasmic tail of KIR2DL1 irre-

spective of ITIM phosphorylation. It is possible, however, that 

phosphotyrosine-containing proteins specifi cally recruited to 

phosphorylated ITIMs also contribute to the FRET signal seen, 

but this will still indicate active KIR2DL1 signaling, as is our 

 intent. Thus, using FLIM to measure FRET between a GFP-tagged 

receptor and a Cy3-labeled generic anti-phosphotyrosine mAb is 

a sensitive technique for detecting specifi c receptor signals at 

an IS. This generic method could be applied to image phosphory-

lation of any receptor at the IS and is especially useful for probing 

phosphorylated sites for which specifi c mAb are not available.

KIR phosphorylation requires 
an Src family kinase
We next imaged whether or not KIR phosphorylation would 

persist after treatment with an Src family kinase inhibitor, PP2, 

or an Lck-specifi c inhibitor (Burchat et al., 2000). KIR2DL1- 

GFP clustered at the IS after treatment of NK cells with 

either inhibitor (Fig. 1, D and E), indicating that Src family 

kinase–mediated signaling is not necessary for KIR clustering, 

consistent with previous studies (Standeven et al., 2004). 

Anti-phosphotyrosine staining was also still apparent at the IS, 

consistent with phosphorylation of some proteins at the IS 

being mediated by other kinases. Despite KIR2DL1 receptor 
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clustering and anti-phosphotyrosine staining, FRET was not de-

tected in the presence of either PP2 or the Lck-specifi c inhibitor 

(Fig. 1, D–F). Therefore, the activity of Src family protein tyro-

sine kinases, and specifi cally Lck, are necessary for KIR phos-

phorylation at the IS.

KIR phosphorylation is spatially restricted 
to the IS and lasts several minutes
To examine the dynamics of KIR phosphorylation at the inhibi-

tory NK cell IS, we imaged conjugates fi xed after different times 

of coincubation. The fl uorescence lifetime of KIR2DL1-GFP 

decreased in the presence of Cy3-tagged anti-phosphotyrosine 

mAb across all the times examined (Fig. 2). KIR signaling is 

thus sustained for some minutes, perhaps ensuring ongoing 

 interruption of competing activating signals. Changes in the 

FRET effi ciency relate to the relative extent of KIR phosphory-

lation within the synapse (Fig. 2, A–C; right). The extent of 

FRET detected at individual synapses varied, such that a rela-

tively large degree of KIR phosphorylation occurred at some 

synapses, whereas little occurred at others. The mean FRET 

 effi ciency across several synapses was 4.3, 5.2, and 2.8% after 

5, 10, and 20 min of coincubation, respectively (Fig. 2 D). 

Although the FRET effi ciency does not directly report the number 

of activated KIRs, these numbers do suggest that only a surpris-

ingly small fraction of KIR is phosphorylated at a given moment, 

explaining why KIR phosphorylation has been diffi cult to 

detect biochemically.

Interestingly, there was no decrease in the fl uorescence 

lifetime outside where KIR2DL1-GFP clustered at the intercellular 

contact (Fig. 2 D). Thus, KIR phosphorylation occurred only 

locally at the IS, in contrast to EGF receptor signaling, for 

 example, which rapidly spreads throughout the cell membrane 

(Verveer et al., 2000). Even when a single NK cell engages two 

resistant target cells, KIR phosphorylation is restricted to the 

intercellular contact with both targets (Fig. 3 A, top) and does 

not spread to the remaining, unconjugated membrane. By not 

spreading KIR phosphorylation outside the IS, NK cell inhibi-

tion can be restricted to one target cell while maintaining an 

 effective surveillance of another conjugated cell, allowing NK 

cells to survey both susceptible and resistant target cells simul-

taneously and respond appropriately (Eriksson et al., 1999). We 

also found that a single target cell can effectively trigger KIR 

phosphorylation when bound to two NK cells simultaneously 

Figure 1. Imaging KIR2DL1 phosphorylation at the inhibitory NK cell IS. 
YTS cells expressing full-length KIR2DL1-GFP (A), a truncated ITIM-less 
KIR2DL1-GFP (YTS-TR; B), or KIR2DL1-GFP (Y281F and Y311F; C) in which 
the two ITIM tyrosines had been changed to phenylalanine were coincu-
bated with 221/Cw6 target cells and then fixed and stained. YTS/

KIR2DL1-GFP cells were treated with 5 μM PP2 (D) or 5 μM Lck-specifi c 
 inhibitor (E) before coincubation with target cells. KIR phosphorylation is 
detected by a reduction in the fl uorescence lifetime (τ) in picoseconds of 
KIR2DL1-GFP in the presence of the Cy3-tagged anti-phosphotyrosine mAb 
acceptor (DA) compared with an unstained sample (D). Images show the 
fl uorescence lifetimes (within the area of the IS; white box) mapped to a 
continuous scale (τcontinuous; 2,100–2,600 ps) or a discrete scale (τdiscrete), 
where the breakpoint at 2,350 ps corresponds to 5% EFRET. Images shown 
are representative of at least two experiments and a total of 8–15 cell con-
jugates imaged in each condition. Bars, 8 μm. (F) Mean lifetime ± SD of 
KIR2DL1-GFP was calculated by selecting the region of the synapse for 
 unstained cells (D) and cells stained with Cy3-tagged anti-phosphotyrosine 
mAb (DA) for each condition. Values shown in the graph are the mean life-
times across the synapse, which would therefore include a mixture of pixels 
where FRET was present and absent.
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(Fig. 3 A, bottom), ensuring that accumulation of human 

 leukocyte antigen (HLA)–C at one synapse would not make the 

target cell susceptible to attack by another bound NK cell.

KIR phosphorylation occurs 
within microclusters
Analysis of the intensity and fl uorescence lifetime values across 

the synapse revealed discrete domains with decreased lifetime 

within the aggregate of KIR2DL1-GFP at the IS (Fig. 4 A). 

Such “microclusters” of phosphorylated KIR did not specifi -

cally colocalize with an increased concentration of KIR2DL1-

GFP, as determined by comparing the location of FRET 

(decreased lifetime) with the intensity of GFP (Fig. 4 A, top 

three panels). Domains of decreased fl uorescence lifetime were 

not observed at synapses with cells expressing KIR-GFP lack-

ing ITIMs (KIR-TR; Fig. 4 A, bottom). To statistically assess 

whether the observed microclusters with decreased lifetime 

could arise from natural statistical variation in the measured 

fl uorescence lifetime, we quantitatively analyzed the standard 

deviation in the lifetime of KIR2DL1-GFP as a function of 

 intensity compared with a simulated dataset, as previously de-

scribed (Treanor et al., 2005). Effectively, the simulated data 

establishes a baseline in the variability of measured lifetime val-

ues that arise as a consequence of noise in the photon-counting 

process and not due to any real variation in the fl uorescence 

lifetime of the sample. The standard deviation of the fl uores-

cence lifetime of KIR2DL1-GFP at the inhibitory synapse in 

the presence of an acceptor is signifi cantly greater than the sim-

ulated GFP or that observed for the ITIM-less KIR2DL1-GFP 

(Fig. 4 B), confi rming that there are true differences in the fl uo-

rescence lifetime of KIR2DL1-GFP. Our analysis does not 

 allow us to precisely determine the size of microclusters of 

phosphorylated KIR. However, taking these data together, struc-

ture in the organization of phosphorylated KIR must occur on a 

Figure 2. KIR2DL1 phosphorylation is sustained at the inhibitory NK cell IS. 
YTS/KIR2DL1-GFP cells were coincubated with 221/Cw6 for 5 min (A), 
10 min (B), or 20 min (C) and then fi xed and stained with Cy3-labeled 
anti-phosphotyrosine mAb. Images show the fl uorescence lifetime (within 
the area of the IS; white box) mapped to a continuous scale (τcontinuous; 
2,100–2,600 ps) or a discrete scale (τdiscrete), where the breakpoint at 
2,350 ps corresponds to 5% EFRET. FRET effi ciencies were calculated for 
each pixel as EFRET (%) = 1 − τDA/τD × 100, where τDA is the fl uorescence 
lifetime of the donor in the presence of the acceptor and τD is the mean 
fl uorescence lifetime of the donor in the absence of the acceptor (unstained 
controls). Color scale shown covers EFRET 0–15% for 5 and 10 min and 
0–10% for 20 min. Images shown are representative of at least three 
 experiments and a total of 15–20 cell conjugates imaged in each condition. 
Bars, 8 μm. (D) Mean EFRET ± SD at the IS or in the unconjugated  membrane 
for each cell conjugate were calculated, where τDA is the mean fl uores-
cence lifetime of the donor at the IS in the presence of the acceptor and 
τD is the mean fl uorescence lifetime of the donor at the IS in the  absence 
of the acceptor (unstained controls).

Figure 3. KIR phosphorylation occurs specifi cally at the IS. YTS/KIR2DL1-
GFP cells were coincubated with 221/Cw6. (A) Multiple cell conjugates 
consisting of either a single NK cell in conjugation with two target cells (top) 
or a single target cell in conjugation with two NK cells (bottom) were imaged 
by FLIM. The fl uorescence lifetime, within the area of the IS (white box), of 
KIR2DL1-GFP in the presence of the acceptor is shown on a continuous scale 
(τcontinuous; 2,000–2,500 ps) or a discrete scale (τdiscrete), where the break-
point at 2,200 ps corresponds to 5% EFRET. Bars, 8 μm. (B) The range in 
EFRET at synapses formed by cells involved in multiple contacts is shown and 
is similar to the range of EFRET observed in cells making single contacts.
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scale close to the limit of the spatial resolution of our method, 

i.e., 1 μm. This scale could represent the size of microclusters 

themselves or a distance between smaller microclusters. Very 

small microclusters, e.g., below the limit of resolution for opti-

cal microscopy (	0.4 mm), would be less visible. Large clus-

ters of phosphorylated KIR, i.e., 3–4 μm, were sometimes 

seen, which may result from an aggregation of smaller micro-

clusters. For comparison, the size of the cluster of KIR2DL1-

GFP was 5–8 μm.

3D imaging of FRET was obtained by fl uorescence life-

time images being acquired every 0.5 μm throughout the conju-

gate, and the en face fl uorescence intensity and lifetime at the IS 

was reconstructed (Fig. 5). Discrete regions of decreased fl uo-

rescence lifetime within the cluster of KIR were clearly visible. 

Thus, KIR signaling does not occur uniformly across the IS 

and, although there is potentially signifi cant KIR signaling 

 occurring in other areas of the synapse, the majority of KIR 

 signaling appears spatially confi ned to discrete microclusters 

within the larger aggregation of receptor at the IS.

Microclusters of NK cell Lck accumulate 
at inhibitory synapses
We next set out to test for the presence of microclusters of sig-

naling in live cell–cell conjugates. Visualization of KIR phos-

phorylation at the NK cell IS required accurate detection of low 

levels of FRET. Single photon counting is the method of choice 

for the most accurate measurements of fl uorescence lifetime. 

However, single photon–counting FLIM is inherently slow 

(Suhling et al., 2005) and thus it is not possible to extend our 

methodology to detect KIR phosphorylation in fast-moving live 

cell interactions. Instead, because we found that, consistent with 

previous studies (Binstadt et al., 1996), Lck was necessary for 

KIR phosphorylation (Fig. 1), we set out to determine whether 

the kinase itself would accumulate in microclusters at the inhib-

itory NK cell IS.

To assess the cellular distribution of Lck in live cells, 

YTS/KIR2DL1 cells were transfected to express Lck conju-

gated to monomeric YFP (mYFP). Western blotting confi rmed 

the presence of Lck-mYFP at the expected size in these trans-

fectants (unpublished data). Confi rming that the chimera Lck-

mYFP could be functional, expression of Lck-mYFP in JCam1.6 

restored the ability of this Lck-defi cient cell line to fl ux calcium 

after anti-CD3 mAb stimulation (unpublished data), consistent 

with previous observations (Ehrlich et al.,  2002). Expression 

of Lck-mYFP did not alter the cytolytic response of YTS/

KIR2DL1, as target cells expressing a noncognate MHC class I 

protein (221/Cw3) were still lysed by this transfectant, whereas 

target cells expressing a cognate MHC class I protein (221/Cw6) 

were resistant (unpublished data).

Figure 4. KIR phosphorylation occurs in discrete microclusters. 
(A) KIR2DL1-GFP fl uorescence intensity and fl uorescence lifetime were ana-
lyzed across the region of clustered KIR (left) by plotting (right) the intensity 
(black line, left scale) and fl uorescence lifetime (blue line, right scale) for 
each pixel across the synapse. For reference, the lifetime representing 
where 5% FRET effi ciency occurred for each sample is also depicted 

(red line). Data shown are for YTS/KIR2DL1-GFP cells coincubated with 
221/Cw6 for 5, 10, or 20 min, or YTS-TR cells. Data are representative of 
at least three experiments and a total of 15–20 cell conjugates imaged in 
each condition. (B) SD in fl uorescence lifetime as a function of intensity for 
a simulated GFP dataset and representative cell conjugates of YTS/
KIR2DL1-GFP and 221/Cw6 (D and two examples of DA) or YTS-TR and 
221/Cw6 (DA). Bars, 8 μm.
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In images, Lck-mYFP was localized at the YTS/KIR2DL1 

plasma membrane as well as in an intracellular pool, as previ-

ously observed in peripheral blood NK cells (Vyas et al., 2002) 

and T cells (Ehrlich et al., 2002). Soon after contact with target 

cells, small clusters of membrane-associated Lck are clearly 

visible at the IS (Fig. 6), consistent with previous studies ob-

serving clusters of Lck at NK cell synapses in fi xed cells (Vyas 

et al., 2001). Small clusters of Lck-YFP were sustained for sev-

eral minutes at the inhibitory NK cell IS (Fig. 6). The presence 

of small clusters of Lck being sustained at the inhibitory NK 

cell IS coupled with observations of microclusters of phosphor-

ylated KIR is consistent with Lck being necessary for KIR 

phosphorylation and demonstrates further that NK cell signal-

ing occurs within microclusters.

Discussion
We visualized signaling at an IS using FLIM to report FRET 

between GFP-tagged KIR and a fl uorophore-tagged general 

anti-phosphotyrosine mAb. This technology can be applied to 

image the phosphorylation of any specifi c receptor at an inter-

cellular contact. This methodology is of particular use where 

phosphospecifi c mAbs are not available and could be extended 

toward developing rapid screens for protein phosphorylation. 

Using this methodology, we found that KIR signaling occurs 

within discrete microclusters within the larger aggregation of 

protein at the NK cell IS. Imaging of T cell signaling events re-

cently revealed microclusters of TCR colocalized with activated 

forms of Lck, ZAP-70, and LAT at the contact between a T cell 

and a lipid bilayer (Campi et al., 2005; Trautmann, 2005; Yokosuka 

et al., 2005; Saito and Yokosuka, 2006), which builds on earlier 

work showing TCR signaling clusters assembled at contacts 

with antibody-coated coverslips (Bunnell et al., 2002). Thus, 

our observations extend the generality of microcluster-mediated 

signaling by demonstrating their relevance to human NK cell 

inhibitory signaling.

What then, is restricting KIR phosphorylation to discrete 

microclusters? Although the Singer-Nicolson fl uid mosaic 

model has formed the basis of our understanding of the cell 

membrane for the past three decades, relatively recent evidence 

suggests the organization of both proteins and lipids to be 

much more complex than this (Engelman, 2005). Here, it is un-

likely that lipid rafts facilitate the formation of microclusters 

of inhibitory signaling, as KIR2DL1 is excluded from such do-

mains and in fact signals to block an accumulation of lipid rafts 

to the IS (Lou et al., 2000; Fassett et al., 2001). Alternatively, 

specifi c protein–protein interactions could create microclusters 

of KIR2DL1 phosphorylation or they might be a result of 

Figure 5. 3D FLIM of FRET reveals microclusters of signaling at the inhibi-
tory NK cell IS. 3D imaging of FRET was obtained by FLIM images being 
acquired every 0.5 μm throughout the conjugate. En face reconstructions 
are shown of KIR2DL1-GFP intensity and τ (in ps) plotted on a continuous 
scale (1,800–2,400 ps) and a discrete scale where the breakpoint of 
2,050 ps represents the point corresponding to 5% EFRET. Images are repre-
sentative of at least three experiments and a total of 30 cell conjugates. 
Bars, 8 μm.

Figure 6. Lck is distributed in microclusters at inhibitory NK cell synapses. 
Live cell imaging of YTS/KIR2DL1 transfected to express Lck-mYFP in the 
presence of 221/Cw6 target cells was performed by resonance scanning 
confocal microscopy. Brightfi eld images of a representative conjugate are 
shown (BF), with the corresponding reconstruction of the IS viewed en face 
and colored according to intensity (synapse) and, for comparison, uncon-
jugated cell membrane away from the IS (membrane). Images are shown 
at 4, 6, 8, and 10 min after initial contact between cells. Data are repre-
sentative of six time-lapse 3D series obtained from three independent 
 experiments. Bars, 10 μm.
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“membrane-skeleton corralling,” i.e., by the cytoplasmic do-

mains of transmembrane proteins colliding with the cytoskele-

ton (Kusumi et al., 2005). Such temporary confi nement would 

be further enhanced by oligomerization, and indeed metal ions, 

known to dimerize KIR2DL1 in solution (Fan et al., 2000), have 

been found to be necessary for KIR function and phosphorylation 

(Rajagopalan et al., 1995; Faure et al., 2003).

It is perhaps surprising that spatially confi ned inhibitory 

KIR signals are effective in inhibiting NK cell responses. How-

ever, the observation that KIR need not be continuously actively 

inhibiting over the entire synapse is consistent with the observa-

tion that a chimera of KIR tagged with an extracellular GFP was 

able to effi ciently inhibit NK cell responses without being sig-

nifi cantly clustered at the IS (Borszcz et al., 2003). In general, 

spatially confi ned recruitment of kinases to the NK cell synapse 

may facilitate the transphosphorylation of numerous NK cell 

receptors within a microcluster. For example, trapped Lck, as 

recently visualized at the interface between a T cell and a mAb-

coated coverslip (Douglass and Vale, 2005), could facilitate 

transphosphorylation between KIR and other NK cell receptors 

within discrete microclusters.

Thus, one specifi c hypothesis for an effi cient mechanism 

of KIR-mediated inhibition would be that activating NK cell 

 receptors recruit Lck, which is then able to transphosphorylate 

 local KIR if they are engaged by HLA-C on the opposing cell. 

This model therefore requires that signaling by NK cell–activating 

receptors occurs within microclusters, analogous to TCR 

 signals. This could be caused by NK cell–activating ligands be-

ing organized into specifi c microdomains on the surface of the 

opposing target cell (Eleme et al., 2004). Thus,  in this model, 

the spatial confi nement of inhibitory receptor phosphorylation 

serves to focus inhibitory action, e.g., the dephosphorylation of 

Vav-1 (Stebbins et al., 2003), to specifi c sites where the compet-

ing activating signals are triggered.

Broadly, it would previously have been expected that KIR 

signaling occurs homogeneously across the cluster of KIR at 

the IS. Thus, the data presented here seeds new research into 

how the spatial confi nement of receptor phosphorylation could 

infl uence the integration of activating and inhibitory signals by 

NK cells.

Materials and methods
Cells
A transfectant of the MHC-defi cient human B-lymphoblastoid cell line, 
721.221 expressing HLA-Cw6 (221/Cw6) has been described (Davis 
et al., 1999). YTS, a subclone of the human tumor line YT, expressing 
KIR2DL1 (YTS/KIR2DL1; Cohen et al., 1999), COOH-terminal GFP-tagged 
KIR2DL1 (YTS/KIR2DL1-GFP; Borszcz et al., 2003), or a truncated ITIM-
less KIR2DL1-GFP (YTS-TR; Standeven et al., 2004) where GFP was placed 
just upstream of the membrane-proximal ITIM and the rest of the KIR was 
cytoplasmic tail deleted have also been described. A mutant of KIR2DL1-
GFP (Y281F and Y311F) in which the two ITIM tyrosines were mutated 
to phenylalanine was generated in pBABE (QuikChange Mutagenesis; 
 Stratagene). The membrane-distal tyrosine was mutated to phenylalanine 
fi rst using the forward primer 5′-G A T A T C A T C G T G T T C A C G G A A C T T C C -3′ 
and its reverse complement. The membrane-proximal tyrosine was then 
mutated to phenylalanine using the forward primer 5′-C C T C A G G A G G T G-
A C A T T C A C A C A G T T G A A T C -3′ and its reverse complement. The fi delity of 
the construct was confi rmed by sequencing and expressed in YTS cells by 
retroviral transduction as described previously (Borszcz et al., 2003).

For Lck-mYFP, human Lck was amplifi ed by PCR from cDNA 
 synthesized from PBL using primers 5′-C C C A A G C T T G C C  A C C A T G G G C T-
G T G G C T G C A G C T C -3′, including a HindIII restriction site, and 5′-G C G G T-
A C C C C A G G C T G A G G C T G G T A C T G G C C C T C -3′ to remove the stop 
codon and include a KpnI restriction site. The PCR product was fi rst cloned 
into pCR2.1-TOPO (Invitrogen), and the correct sequence was confi rmed 
and subcloned into the mammalian expression vector pcDNA 3.1/Hygro 
containing mYFP, i.e., with substitutions S65G, S72A, T203Y, and A206K 
(a gift from R. Tsien, University of California, San Diego, La Jolla, CA). This 
resulted in a construct encoding Lck and mYFP connected by an 11-amino-
acid linker (Gly-Val-Pro-Ser-Ser-Asp-Pro-Pro-Val-Ala-Thr). YTS-KIR2DL1 and a 
variant of Jurkat lacking Lck, JCam1.6 (American Type Culture Collection), 
were each transfected to express Lck-mYFP by electroporation. Transfec-
tants were grown in 0.8 mg/ml hygromycin, and Lck-mYFP–expressing 
cells were sorted by fl ow cytometry (FACSDiva; Becton Dickinson).

Cell conjugation and staining
For cell conjugation, 5 × 105 YTS/KIR2DL1, YTS/KIR2DL1-GFP, YTS-TR, 
or YTS-KIR2DL1 (Y281F and Y311F) was mixed with 5 × 105 221/Cw6 
cells in 50 μl warm media and incubated at 37°C/5% CO2 for the 
 indicated time. Cell conjugates were then fi xed in 100 μl buffer containing 
paraformaldehyde and saponin (Cytofi x/Cytoperm; Becton Dickinson) 
for 15 min at 4°C followed by 5 min at room temperature. Cells were 
washed in 0.1% Tween-20/PBS and blocked in 100 μl buffer containing 
saponin (Perm/Wash; Becton Dickinson) with 5% horse serum/3% BSA 
for 30 min at 4°C. Cell conjugates were stained in 100 μl of 10 μg/ml 
anti-phosphotyrosine mAb (clone 4G10; Upstate Biotechnology) tagged 
with Cy3 (Cy3/mAb ratio 8:1) for 2 h at 4°C. After washing, cell conjugates 
were gently resuspended and 	8 μl was placed between a microscope 
slide (thickness 1 mm; Becton Dickinson) and a glass coverslip (thickness 
No. 1.5; Becton Dickinson).

Inhibitors
The Src family tyrosine kinase inhibitor PP2 (Calbiochem) and the 
Lck- specifi c inhibitor, 7-Cyclopentyl-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]-
pyrimidin-4-ylamine (Burchat et al., 2000; Sigma-Aldrich) were diluted to 
5 μM in cell media. YTS transfectants were preincubated with inhibitors 
for 1 h at 37°C/5% CO2 before mixing with target cells for 10 min in the 
continuing presence of the inhibitor.

FLIM to measure FRET
FLIM was performed using an inverted scanning confocal microscope 
(DMIRE2/TCS SP2; Leica Microsystems Ltd) with a 63× oil immersion 
(NA 1.3). Single-photon excitation was achieved using a solid-state, diode-
pumped, frequency-doubled Nd:YAG laser (Millennia; Spectra-Physics Ltd) 
to pump a mode-locked frequency-doubled Ti:Sapphire laser (Tsunami; 
Spectra-Physics Ltd) that provided optical pulses of 100-fs full width at half 
maximum at a repetition rate of 80 MHz. The laser was double passed 
through a glass block (total interaction length 130 cm) to stretch the pulse 
to a fi nal width of 13 ps. The optimal excitation wavelength to excite the 
donor with minimal direct excitation of the acceptor was determined to be 
470 nm. Fluorescence emission of KIR2DL1-GFP was collected using a nar-
row bandpass fi lter (515 ± 15 nm) to limit detection to only the donor fl uo-
rophore (GFP) and prevent contamination from acceptor (Cy3) emission. 
Fluorescence intensity images for Cy3-tagged anti-phosphotyrosine mAb 
were collected from 600–700 nm to limit bleed-through of the donor GFP 
fl uorescence, resulting in images that are much dimmer than if the whole 
Cy3 emission spectrum was collected.

The fl uorescence lifetime of GFP-tagged KIR2DL1 was measured using 
time-correlated single photon counting (SPC-730; Becker & Hickl GmbH). 
Laser power was adjusted to give a mean photon count rate of 	1 × 105 
counts/s, and fl uorescence lifetime images were acquired over 300 s. 
 Fluorescence lifetimes were calculated for all pixels in the fi eld of view 
(128 × 128 pixels; SPCImage). As the fl uorescence intensity in the uncon-
jugated (nonsynapse) membrane was very low, it was necessary to bin all 
photons from this region to accurately calculate the fl uorescence lifetime. 
To achieve this, an in house–written fl uorescence-decay program (written in 
Labview [National Instruments]) was used. The fl uorescence lifetime for the 
synapse was also calculated using this program and agreed well with the 
fl uorescence lifetime calculated using SPCImage.

FRET effi ciency images were calculated such that the FRET effi ciency, 
EFRET = 1 − τDA/τD, where τDA is the pixel-by-pixel fl uorescence lifetime of 
the donor in the presence of the acceptor and τD is the mean fl uorescence 
lifetime of the donor at the IS in the absence of the acceptor for all cells im-
aged (unstained controls). Mean FRET effi ciencies at the IS were calculated 
where τDA is the mean fl uorescence lifetime of the donor in the presence of 
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the acceptor and τD is the mean fl uorescence lifetime of the donor in the 
absence of the acceptor.

3D imaging of FRET was obtained by fl uorescence lifetime images 
being acquired every 0.5 μm throughout the conjugate. An in house–
 written MatLab program was used to generate the en face fl uorescence 
lifetime data for those synapses that were orientated vertically or horizon-
tally to the x axis of the image. To select the pixels in the synapse volume, 
a region of interest was fi rst created around a synapse in one of the image 
slices from the stack. This produced a 4D matrix consisting of the three spatial 
dimensions of the synapse and the lifetime intensity information for each 
pixel. The lifetime intensity information was then integrated along one of 
the spatial dimensions, x or y, i.e., perpendicular to the synapse region 
selected, effectively collapsing the volume to produce a 2D lifetime image 
(x or y and z with lifetime data). This dataset was then used to produce the en 
face intensity and fl uorescence lifetime images (SPCImage fi tting software). 
Similar images, demonstrating microclusters of signaling, were also ob-
tained using commercially available 3D rendering software (Volocity; 
 Improvision) to create the en face image of optical sections individually 
processed in SPCImage (unpublished data).

Image presentation
As fl uorescence lifetime images were limited to 128 × 128 pixels, the limit 
in resolution of the photon counting detector, it was necessary to apply an 
interpolation method to obtain enlarged images of synapses at suitable 
resolution and size for publication. For this, the “nearest neighbor” interpo-
lation method (Photoshop 7; Adobe) was applied, which sets the value 
(or color, in this case) of an interpolated point to the value of the nearest 
existing data point, effectively making the pixels bigger. For example, to 
enlarge 200%, one pixel will be enlarged to a 2 × 2 area of four pixels 
with the same color as the original pixel. This is the most appropriate 
method for interpolation of indexed images, i.e., images that map pixel 
values to colors, as it does not change the color information of the image 
and does not introduce any anti-aliasing, which would make edges appear 
smoother by averaging out pixels. An exception is that for reconstruction of 
the en face synapse (shown in Fig. 5) the bicubic method of interpolation 
was applied. We carefully confi rmed that the images of synapses did not 
appear different by applying this procedure, and analysis of fl uorescence 
lifetime data was always performed on the raw, noninterpolated data.

Variability in FLIM
It is clear that random errors caused by instrumental drift or subtle variation 
in the biological sample will effect different lifetime images far more so than 
within a single image. It has been specifi cally calculated that interimage 
 differences, using a frequency-based FLIM methodology, are typically one 
 order of magnitude greater than intraimage variations (Hanley et al., 2001). 
We have addressed this in three ways: (1) In all experiments, we compared 
image data taken from one specifi c experiment performed over one single 
day. (2) We confi rmed that the presence or absence of FRET was consistent 
in each sample over multiple independent experiments. (3) The “breakpoint” 
in all images using a discrete scale for the fl uorescence lifetime is specifi -
cally set at the point where FRET effi ciency is 5% for that experiment.

Live cell imaging
YTS/KIR2DL1 cells transfected to express Lck-mYFP and 221/Cw6 target 
were mixed in a glass-bottomed microscope chamber (Nunc) containing 
200 μl of warm RPMI media. Live cell conjugates were imaged by reso-
nance scanning confocal microscopy (DMIRE2/TCS SP2 RS) using a 63× 
water-immersion objective (NA 1.2). The microscope stage was housed 
within an environmental chamber (Solent Scientifi c) maintained at 
37°C/5% CO2. mYFP was excited using the 514-nm line of an argon laser. 
3D views of cell conjugates and en face views of the synapse were recon-
structed using Volocity.

We thank Björn Önfelt for discussions.
We acknowledge fi nancial support from a Department of Trade and 

Industry Beacon award (QCBB/C/007/00007), the Medical Research 
Council (grant GO500563), the Chemical Biology Centre, the Biotechnology 
and Biological Sciences Research Council (grant BB/C512896/1), the Euro-
pean Community (Framework VI Integrated Project “Integrated technologies for 
in vivo molecular imaging” contract LSHG-CT-2003-503259), the Canadian 
Institutes of Health Research (grant CIHR MOP 36344), and a Lister Institute 
Research Prize (to D.M. Davis).

Submitted: 19 January 2006
Accepted: 26 May 2006

References
Bastiaens, P.I., and A. Squire. 1999. Fluorescence lifetime imaging microscopy: 

spatial resolution of biochemical processes in the cell. Trends Cell Biol. 
9:48–52.

Binstadt, B.A., K.M. Brumbaugh, C.J. Dick, A.M. Scharenberg, B.L. Williams, 
M. Colonna, L.L. Lanier, J.P. Kinet, R.T. Abraham, and P.J. Leibson. 
1996. Sequential involvement of Lck and SHP-1 with MHC-recognizing 
receptors on NK cells inhibits FcR-initiated tyrosine kinase activation. 
Immunity. 5:629–638.

Borg, C., A. Jalil, D. Laderach, K. Maruyama, H. Wakasugi, S. Charrier, B. 
Ryffel, A. Cambi, C. Figdor, W. Vainchenker, et al. 2004. NK cell activa-
tion by dendritic cells (DCs) requires the formation of a synapse leading 
to IL-12 polarization in DCs. Blood. 104:3267–3275.

Borszcz, P.D., M. Peterson, L. Standeven, S. Kirwan, M. Sandusky, A. Shaw, 
E.O. Long, and D.N. Burshtyn. 2003. KIR enrichment at the effector-
 target cell interface is more sensitive than signaling to the strength of 
ligand binding. Eur. J. Immunol. 33:1084–1093.

Bunnell, S.C., D.I. Hong, J.R. Kardon, T. Yamazaki, C.J. McGlade, V.A. Barr, and 
L.E. Samelson. 2002. T cell receptor ligation induces the formation of 
dynamically regulated signaling assemblies. J. Cell Biol. 158:1263–1275.

Burchat, A.F., D.J. Calderwood, G.C. Hirst, N.J. Holman, D.N. Johnston, R. 
Munschauer, P. Rafferty, and G.B. Tometzki. 2000. Pyrrolo[2,3-d]-
pyrimidines containing an extended 5-substituent as potent and selective 
inhibitors of lck II. Bioorg. Med. Chem. Lett. 10:2171–2174.

Burshtyn, D.N., A.M. Scharenberg, N. Wagtmann, S. Rajagopalan, K. Berrada, 
T. Yi, J.P. Kinet, and E.O. Long. 1996. Recruitment of tyrosine phospha-
tase HCP by the killer cell inhibitor receptor. Immunity. 4:77–85.

Burshtyn, D.N., A.S. Lam, M. Weston, N. Gupta, P.A. Warmerdam, and E.O. 
Long. 1999. Conserved residues amino-terminal of cytoplasmic tyrosines 
contribute to the SHP-1-mediated inhibitory function of killer cell Ig-like 
receptors. J. Immunol. 162:897–902.

Campi, G., R. Varma, and M.L. Dustin. 2005. Actin and agonist MHC-peptide 
complex-dependent T cell receptor microclusters as scaffolds for signaling. 
J. Exp. Med. 202:1031–1036.

Carlin, L.M., K. Eleme, F.E. McCann, and D.M. Davis. 2001. Intercellular 
transfer and supramolecular organization of human leukocyte anti-
gen C at inhibitory natural killer cell immune synapses. J. Exp. Med. 
194:1507–1517.

Cohen, G.B., R.T. Gandhi, D.M. Davis, O. Mandelboim, B.K. Chen, J.L. 
Strominger, and D. Baltimore. 1999. The selective downregulation of 
class I major histocompatibility complex proteins by HIV-1 protects HIV-
infected cells from NK cells. Immunity. 10:661–671.

Colonna, M., and J. Samaridis. 1995. Cloning of immunoglobulin-superfamily 
members associated with HLA-C and HLA-B recognition by human 
natural killer cells. Science. 268:405–408.

Davis, D.M., and M.L. Dustin. 2004. What is the importance of the immuno-
logical synapse? Trends Immunol. 25:323–327.

Davis, D.M., I. Chiu, M. Fassett, G.B. Cohen, O. Mandelboim, and J.L. 
Strominger. 1999. The human natural killer cell immune synapse. Proc. 
Natl. Acad. Sci. USA. 96:15062–15067.

Douglass, A.D., and R.D. Vale. 2005. Single-molecule microscopy reveals 
plasma membrane microdomains created by protein-protein networks 
that exclude or trap signaling molecules in T cells. Cell. 121:937–950.

Ehrlich, L.I., P.J. Ebert, M.F. Krummel, A. Weiss, and M.M. Davis. 2002. 
Dynamics of p56lck translocation to the T cell immunological synapse 
following agonist and antagonist stimulation. Immunity. 17:809–822.

Eleme, K., S.B. Taner, B. Onfelt, L.M. Collinson, F.E. McCann, N.J. Chalupny, 
D. Cosman, C. Hopkins, A.I. Magee, and D.M. Davis. 2004. Cell surface 
organization of stress-inducible proteins ULBP and MICA that stimulate 
human NK cells and T cells via NKG2D. J. Exp. Med. 199:1005–1010.

Engelman, D.M. 2005. Membranes are more mosaic than fl uid. Nature. 
438:578–580.

Eriksson, M., G. Leitz, E. Fallman, O. Axner, J.C. Ryan, M.C. Nakamura, and 
C.L. Sentman. 1999. Inhibitory receptors alter natural killer cell inter-
actions with target cells yet allow simultaneous killing of susceptible 
 targets. J. Exp. Med. 190:1005–1012.

Fan, Q.R., E.O. Long, and D.C. Wiley. 2000. Cobalt-mediated dimeriza-
tion of the human natural killer cell inhibitory receptor. J. Biol. Chem. 
275:23700–23706.

Fassett, M.S., D.M. Davis, M.M. Valter, G.B. Cohen, and J.L. Strominger. 2001. 
Signaling at the inhibitory natural killer cell immune synapse regulates 
lipid raft polarization but not class I MHC clustering. Proc. Natl. Acad. 
Sci. USA. 98:14547–14552.

Faure, M., D.F. Barber, S.M. Takahashi, T. Jin, and E.O. Long. 2003. Spontaneous 
clustering and tyrosine phosphorylation of NK cell inhibitory receptor 
 induced by ligand binding. J. Immunol. 170:6107–6114.

D
ow

nloaded from
 http://jcb.rupress.org/jcb/article-pdf/174/1/153/1874997/153.pdf by guest on 25 April 2024



MICROCLUSTERS OF KIR SIGNALING • TREANOR ET AL. 161

Fry, A.M., L.L. Lanier, and A. Weiss. 1996. Phosphotyrosines in the killer cell 
inhibitory receptor motif of NKB1 are required for negative signaling 
and for association with protein tyrosine phosphatase 1C. J. Exp. Med. 
184:295–300.

Hanley, Q.S., V. Subramaniam, D.J. Arndt-Jovin, and T.M. Jovin. 2001. 
Fluorescence lifetime imaging: multi-point calibration, minimum resolv-
able differences, and artifact suppression. Cytometry. 43:248–260.

Karlhofer, F.M., R.K. Ribaudo, and W.M. Yokoyama. 1992. MHC class I allo-
antigen specifi city of Ly-49+ IL-2-activated natural killer cells. Nature. 
358:66–70.

Karre, K., H.G. Ljunggren, G. Piontek, and R. Kiessling. 2005. Selective re-
jection of H-2-defi cient lymphoma variants suggests alternative immune 
defence strategy. 1986. J. Immunol. 174:6566–6569.

Krzewski, K., X. Chen, J.S. Orange, and J.L. Strominger. 2006. Formation of a 
WIP-, WASp-, actin-, and myosin IIA-containing multiprotein complex 
in activated NK cells and its alteration by KIR inhibitory signaling. J. Cell 
Biol. 173:121–132.

Kusumi, A., C. Nakada, K. Ritchie, K. Murase, K. Suzuki, H. Murakoshi, R.S. 
Kasai, J. Kondo, and T. Fujiwara. 2005. Paradigm shift of the plasma 
membrane concept from the two-dimensional continuum fl uid to the parti-
tioned fl uid: high-speed single-molecule tracking of membrane molecules. 
Annu. Rev. Biophys. Biomol. Struct. 34:351–378.

Lanier, L.L. 2005a. Missing self, NK cells, and The White Album. J. Immunol. 
174:6565.

Lanier, L.L. 2005b. NK cell recognition. Annu. Rev. Immunol. 23:225–274.

Ljunggren, H.G., and K. Karre. 1990. In search of the ‘missing self’: MHC mol-
ecules and NK cell recognition. Immunol. Today. 11:237–244.

Lou, Z., D. Jevremovic, D.D. Billadeau, and P.J. Leibson. 2000. A balance be-
tween positive and negative signals in cytotoxic lymphocytes regulates 
the polarization of lipid rafts during the development of cell-mediated 
killing. J. Exp. Med. 191:347–354.

Ng, T., A. Squire, G. Hansra, F. Bornancin, C. Prevostel, A. Hanby, W. Harris, D. 
Barnes, S. Schmidt, H. Mellor, et al. 1999. Imaging protein kinase Cα 
activation in cells. Science. 283:2085–2089.

Olcese, L., P. Lang, F. Vely, A. Cambiaggi, D. Marguet, M. Blery, K.L. Hippen, 
R. Biassoni, A. Moretta, L. Moretta, et al. 1996. Human and mouse killer-
cell inhibitory receptors recruit PTP1C and PTP1D protein tyrosine phos-
phatases. J. Immunol. 156:4531–4534.

Orange, J.S., K.E. Harris, M.M. Andzelm, M.M. Valter, R.S. Geha, and J.L. 
Strominger. 2003. The mature activating natural killer cell immuno-
logic synapse is formed in distinct stages. Proc. Natl. Acad. Sci. USA. 
100:14151–14156.

Rajagopalan, S., C.C. Winter, N. Wagtmann, and E.O. Long. 1995. The Ig- related 
killer cell inhibitory receptor binds zinc and requires zinc for recognition 
of HLA-C on target cells. J. Immunol. 155:4143–4146.

Saito, T., and T. Yokosuka. 2006. Immunological synapse and microclusters: 
the site for recognition and activation of T cells. Curr. Opin. Immunol. 
18:305–313.

Standeven, L.J., L.M. Carlin, P. Borszcz, D.M. Davis, and D.N. Burshtyn. 2004. 
The actin cytoskeleton controls the effi ciency of killer Ig-like recep-
tor accumulation at inhibitory NK cell immune synapses. J. Immunol. 
173:5617–5625.

Stebbins, C.C., C. Watzl, D.D. Billadeau, P.J. Leibson, D.N. Burshtyn, and E.O. 
Long. 2003. Vav1 dephosphorylation by the tyrosine phosphatase SHP-1 
as a mechanism for inhibition of cellular cytotoxicity. Mol. Cell. Biol. 
23:6291–6299.

Suhling, K., P.M. French, and D. Phillips. 2005. Time-resolved fl uorescence 
 microscopy. Photochem. Photobiol. Sci. 4:13–22.

Trautmann, A. 2005. Microclusters initiate and sustain T cell signaling. Nat. 
Immunol. 6:1213–1214.

Treanor, B., P.M. Lanigan, K. Suhling, T. Schreiber, I. Munro, M.A. Neil, D. 
Phillips, D.M. Davis, and P.M. French. 2005. Imaging fl uorescence life-
time heterogeneity applied to GFP-tagged MHC protein at an immuno-
logical synapse. J. Microsc. 217:36–43.

Veillette, A., S. Latour, and D. Davidson. 2002. Negative regulation of immuno-
receptor signaling. Annu. Rev. Immunol. 20:669–707.

Verveer, P.J., F.S. Wouters, A.R. Reynolds, and P.I. Bastiaens. 2000. Quantitative 
imaging of lateral ErbB1 receptor signal propagation in the plasma 
 membrane. Science. 290:1567–1570.

Vivier, E., J.A. Nunes, and F. Vely. 2004. Natural killer cell signaling pathways. 
Science. 306:1517–1519.

Vyas, Y.M., K.M. Mehta, M. Morgan, H. Maniar, L. Butros, S. Jung, J.K. 
Burkhardt, and B. Dupont. 2001. Spatial organization of signal trans-
duction molecules in the NK cell immune synapses during MHC 
class I-regulated noncytolytic and cytolytic interactions. J. Immunol. 
167:4358–4367.

Vyas, Y.M., H. Maniar, and B. Dupont. 2002. Cutting edge: differential segrega-
tion of the SRC homology 2-containing protein tyrosine phosphatase-1 
within the early NK cell immune synapse distinguishes noncytolytic from 
cytolytic interactions. J. Immunol. 168:3150–3154.

Wagtmann, N., S. Rajagopalan, C.C. Winter, M. Peruzzi, and E.O. Long. 1995. 
Killer cell inhibitory receptors specifi c for HLA-C and HLA-B identifi ed 
by direct binding and by functional transfer. Immunity. 3:801–809.

Wu, P., and L. Brand. 1994. Resonance energy transfer: methods and applications. 
Anal. Biochem. 218:1–13.

Yokosuka, T., K. Sakata-Sogawa, W. Kobayashi, M. Hiroshima, A. Hashimoto-
Tane, M. Tokunaga, M.L. Dustin, and T. Saito. 2005. Newly generated 
T cell receptor microclusters initiate and sustain T cell activation by 
 recruitment of Zap70 and SLP-76. Nat. Immunol. 6:1253–1262.

Yokoyama, W.M., and W.E. Seaman. 1993. The Ly-49 and NKR-P1 gene fami-
lies encoding lectin-like receptors on natural killer cells: the NK gene 
complex. Annu. Rev. Immunol. 11:613–635.

D
ow

nloaded from
 http://jcb.rupress.org/jcb/article-pdf/174/1/153/1874997/153.pdf by guest on 25 April 2024


