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Introduction
α-Herpesviruses are a subfamily of the herpesviruses con-

taining closely related human and animal pathogens, including 

human herpes simplex virus 1 (HSV-1; cold sores, corneal 

blindness, and encephalitis) and important animal viruses such 

as the porcine pseudorabies virus (PRV) and bovine herpesvirus 1 

(BoHV-1; respiratory symptoms, abortions, and/or neurological 

symptoms). Many of the disease symptoms observed after 

 infection with α-herpesviruses are associated with their neuro-

tropic behavior, including their ability to establish lifelong cy-

cles of latency and reactivation in the peripheral nervous system 

of their host (Preston, 2000; Enquist et al., 2002). Primary rep-

lication of most α-herpesviruses occurs in epithelial cells of the 

upper respiratory tract. Sensory neurons of the trigeminal gan-

glion (TG) that innervate these epithelial cells are predominant 

target cells for HSV-1, PRV, and BoHV-1 (Gutekunst et al., 

1980; Ackermann et al., 1982; Croen et al., 1987).

Entrance of HSV and PRV in the axons of these sensory 

neurons is thought to be initiated by an interaction of the viral 

envelope glycoprotein D (gD) with its receptor nectin-1, fol-

lowed by fusion of the viral envelope with the axolemma, 

which is mediated by viral proteins gB, gD, gH, and gL (Haarr 

et al., 2001; Mata et al., 2001; Milne et al., 2001; Mettenleiter, 

2002; Richart et al., 2003; Spear and Longnecker, 2003). 

 Fusion of the viral envelope with the axolemma is followed by 

retrograde transport of the capsid and a part of the associated 

tegument to the cell nucleus by means of microtubule- associated 

fast axonal transport (Tomishima et al., 2001; Smith et al., 

2004; Luxton et al., 2005). After entry of the DNA into the nu-

cleus, either a full replication cycle is initiated, leading to the 

formation of new virions, or a latent infection is established 

(Jones, 2003). Newly produced virions, during primary infec-

tion or after reactivation, are transported in the anterograde di-

rection along the axon, followed by virus release at the axon 

terminus (Smith et al., 2001; Tomishima and Enquist, 2001, 

2002). Recent data indicate that virus egress in axons may not 

be limited to the axon terminus but also seems to occur at scat-

tered sites along the axon shaft in a manner that remains not 
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 α -Herpesviruses constitute closely related neurotropic 

viruses, including herpes simplex virus in man and 

pseudorabies virus (PRV) in pigs. Peripheral sensory neu-

rons, such as trigeminal ganglion (TG) neurons, are pre-

dominant target cells for virus spread and lifelong latent 

infections. We report that in vitro infection of swine TG 

neurons with the homologous swine α-herpesvirus PRV 

results in the appearance of numerous synaptophysin-

positive synaptic boutons (varicosities) along the axons. 

Nonneuronal cells that were juxtaposed to these varicos-

ities became preferentially infected with PRV, suggesting 

that varicosities serve as axonal exit sites for the virus. Viral 

envelope glycoprotein D (gD) was found to be  necessary 

and suffi cient for the induction of varicosities. Inhibition of 

Cdc42 Rho GTPase and p38 mitogen- activated protein ki-

nase signaling pathways strongly suppressed gD-induced 

varicosity formation. These data represent a novel aspect 

of the cell biology of α- herpesvirus infections of sensory 

neurons, demonstrating that virus attachment/entry is as-

sociated with signaling events and neuronal changes that 

may prepare effi cient egress of progeny virus.
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fully understood (Tomishima and Enquist, 2002; Ch’ng and 

Enquist, 2005; Saksena et al., 2006).

Despite the obvious importance of TG neurons as predomi-

nant target cells and sites of latency/reactivation events for many 

α-herpesviruses, a detailed study of the interactions between 

α-herpesviruses and this pathogenetically important cell type has 

been hampered by the lack of easy-to-handle, homologous in 

 vitro systems. We recently established such a homologous in vitro 

two-chamber system, based on the “Campenot” system, to study 

the interaction between porcine TG neurons and the porcine 

α-herpesvirus PRV (Campenot, 1977; De Regge et al., 2006). 

Using this in vitro model, we report that PRV induces, via its gD 

envelope protein, the formation of presynaptic boutons (varicosities) 

along the axon shaft of infected TG neurons. Varicosities are 

swellings along neuronal axons where synaptic vesicles, mito-

chondria, and ER accumulate (Pannese, 1994). They are able to 

form synaptic contacts with contacting nonneuronal cells and 

other axons (Pannese, 1994), but they also seem to play an im-

portant role in nonsynaptic communication in the nervous system 

by the release of neurotransmitters directly in the extrasynaptic 

space (Zhu et al., 1986; Vizi et al., 2004). We observed that non-

neuronal cells aligning the axon shaft of infected TG neurons were 

frequently infected, and the fi rst infected nonneuronal cells were 

almost invariably located in close proximity to the varicosities. 

This suggests that virus-induced varicosities may serve as axon 

exit sites for the virus to infect neighboring cells.

Results
Induction of varicosities along the axons 
of PRV-infected porcine TG neurons
The two-chamber system to study interactions of PRV with 

porcine TG neurons is mounted on a coverslip and consists of 

an inner chamber, in which the neuronal culture (composed of 

neuronal and nonneuronal cells) is seeded, and an outer chamber, 

and the two are separated from each other by a virus- and 

 medium-impermeable silicon barrier (De Regge et al., 2006). 

After 2–3 wk of cultivation of trigeminal neurons in the inner 

chamber, axonal outgrowth through the silicon barrier into the 

outer chamber was detected by light microscopy. Addition of 

2 × 106 plaque-forming units (PFUs) of PRV to the outer cham-

ber resulted in exclusive infection of trigeminal neuronal cell 

bodies in the inner chamber, as described previously (De Regge 

et al., 2006).

Surprisingly, axons of PRV-infected neurons (24 h after 

inoculation) showed a massive amount of bouton-like axonal 

swellings, which were rarely detected on axons of noninfected 

cell bodies (Fig. 1 A). Double immunofl uorescent stainings 

 using a neuronal cell marker (neurofi lament) and a marker for 

synaptic vesicles (synaptophysin; Fig. 1 B) confi rmed that the 

swellings are presynaptic boutons, also called varicosities. 

 Labeling of the PRV-induced varicosities with FM1-43, a fl uo-

rescent marker for fi ring neurons, indicated that the synaptic 

transmission at the varicosities is intact (Fig. 1 C). Varicosities 

were formed between 3 and 6 h after inoculation and were 

 observed in >70% of the axons at both early (6 h after inoculation) 

and late (24 h after inoculation) stages of infection. In mock-

treated cultures, only 12% of the axons showed varicosities 

(Fig. 1 D).

A PRV strain that lacks the gD envelope 
protein is unable to induce the formation 
of varicosities
Varicosities could be induced by UV-inactivated PRV (Fig. 2 B), 

indicating that the trigger for varicosity formation occurs early 

in infection, either during virus attachment or entry, before the 

Figure 1. Induction of varicosities along the 
axons of PRV-infected porcine TG neurons. 
(A) Confocal images of TG neurons in the inner 
chamber of mock- or PRV-infected two-chamber 
models at 24 h after inoculation, stained for 
the neuronal marker neurofi lament 68 (Texas 
red) and PRV antigens (FITC).  Arrows point to 
varicosities. Bar, 20 μm. (B and C) Confocal 
images of varicosities in the inner chamber of 
a two-chamber model at 24 h after inocula-
tion with 2 × 106 PFUs of WT-PRV and double 
stained for neurofi lament (Texas red) and the 
synaptic vesicle marker synaptophysin (FITC; B) 
or labeled with FM1-43 (C). Bars, 5 μm. 
(D) Percentage of axons with varicosities in 
mock-treated or PRV-inoculated two-chamber 
models (3, 6, and 24 h after inoculation). Data 
shown represent means ± SEM of triplicate 
 assays. Percentages indicated by the same 
 letter do not signifi cantly differ (α = 0.05).
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onset of viral protein production. To assess whether induction 

of varicosities involves the virus entry–essential viral envelope 

proteins gB or gD, isogenic stocks of phenotypically and geno-

typically gBnull- and gDnull-PRV were prepared. Virus stocks 

were obtained by inoculating phenotypically complemented 

gBnull- and gDnull-PRV stocks on noncomplementing swine 

testicle cells and harvesting the progeny virus from the culture 

supernatant. SDS-PAGE and Western blotting confi rmed that 

gB and gD were absent from the gBnull- and gDnull-PRV 

stocks, respectively (Fig. 2 A). Relative virus particle numbers 

in the gBnull- and gDnull-PRV stocks were determined as de-

scribed previously (Qie et al., 1999; Cheshenko and Herold, 

2002), by comparing the amount of gB and gD in the deleted 

stocks and in serial dilutions of wild-type (WT)–PRV stock by 

optical densitometry after Western blotting, as described in 

 Materials and methods.

Virus quantities of gBnull- and gDnull-PRV correspond-

ing to the amount of particles present in 2 × 106 PFUs of WT-

PRV were added to the outer chamber of the two-chamber 

system, and the percentages of axons displaying varicosities 

were determined at 24 h after inoculation. Varicosity induction 

by the gBnull virus was comparable to that of WT-PRV (68 vs. 

72%, respectively; Fig. 2 B). However, when axons were inocu-

lated with the gDnull virus, the percentage of axons with vari-

cosities was comparable to that of the mock-treated control 

(14 vs. 12%, respectively). As expected, neither null virus in-

duced infection of the TG neurons, as neither was able to enter 

the cells (unpublished data). To exclude the possibility that the 

lack of synapse induction by the gDnull virus was due to an in-

suffi cient amount of virus added, the experiment was repeated 

with 10-fold more gDnull virus, and similar results were ob-

tained (unpublished data). In conclusion, a gDnull-PRV strain is 

unable to induce the formation of varicosities, suggesting that 

virion gD triggers this process.

Recombinant PRV-gD protein 
and nectin-1–specifi c antibodies 
induce the formation of varicosities
To address whether gD alone could induce varicosities, various 

concentrations of a truncated, soluble form of PRV-gD (PRV-gDt; 

Connolly et al., 2001) were added to the outer chamber of the 

in vitro model and incubated with the axons for 24 h, followed by 

neurofi lament staining and quantifi cation of the number of axons 

that showed varicosities. Incubation resulted in a dose-dependent 

increase in the number of axons carrying varicosities (Fig. 3 A). 

The addition of 5 μg PRV-gDt/ml or more resulted in 60–70% 

axons with varicosities (Fig. 3 A), which is comparable to the 

percentages observed by the addition of WT-PRV.

Entry of α-herpesviruses, like HSV-1 or PRV, into sensory 

neurons is believed to be mediated by interaction of viral envelope 

protein gD with nectin-1 (Haarr et al., 2001; Mata et al., 2001; 

Milne et al., 2001; Richart et al., 2003). Therefore, we hypoth-

esized that gD-mediated induction of varicosities results from an 

interaction with nectin-1. To test this hypothesis, we determined 

whether addition of various concentrations of an  antibody that 

binds the ectodomain of nectin-1 (CK6;  Krummenacher et al., 

2000) was also able to trigger varicosity formation. As with 

soluble gD, a 24-h incubation period with monoclonal anti–

 nectin-1 antibody in the outer chamber again resulted in a clear 

dose-dependent response. For antibody CK6, 100 μg/ml caused 

Figure 2. A PRV strain that lacks the gD envelope protein is unable to 
induce the formation of varicosities. (A) Western blots of equal volumes 
of a serial dilution of a WT-PRV stock with known titer (PFU/ml) and 
 gBnull- and gDnull-PRV stocks, developed with anti-gB antibodies (blot A) 
or anti-gD antibodies (blot B). (B) Percentage of axons with varicosities 
24 h after inoculation of two-chamber models with an amount of UV-
 inactivated WT-PRV, gBnull-PRV, gDnull-PRV, or WT-PRV particles equiva-
lent to 2 × 106 PFUs of WT-PRV. Data shown represent means ± SEM of 
triplicate assays. Percentages indicated by the same letter do not signifi -
cantly differ (α = 0.05).

Figure 3. Recombinant gD protein and nectin-1–specifi c antibodies 
induce formation of varicosities in TG neurons. Percentage of axons with 
varicosities in mock-treated two-chamber models or at 24 h after addition 
of recombinant soluble PRV-gD (0.001–10 μg/ml; A), a nectin-1–specifi c 
 antibody (0.1–100 μg/ml CK6) or an isotype-matched control antibody 
(100 μg/ml 13D12; B) to the outer chamber of two-chamber systems. Data 
shown represent means ± SEM of triplicate assays. Percentages indicated 
by the same letter do not signifi cantly differ (α = 0.05).
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varicosities to form on 70% of the axons (Fig. 3 B), again similar 

to the percentage observed by addition of WT-PRV. The addition 

of 100 μg/ml of CK41, a monoclonal antibody directed against 

another epitope on the ectodomain of nectin-1, also resulted in 

induction of varicosity formation (unpublished data). The addi-

tion of 100 μg/ml of an isotype-matched control IgG1 antibody 

(13D12) did not result in an increase in the percentage of axons 

with varicosities compared with mock-treated two-chamber  

systems. In conclusion, addition of recombinant gD or anti–

 nectin-1 antibodies to the axons of TG neurons is suffi cient to 

induce the formation of varicosities.

Cdc42 Rho GTPase and p38 MAPK 
signaling pathways are involved in 
𝛂-herpesvirus–induced varicosity formation
Nectin-1 has been shown to signal via small Rho GTPase sig-

naling pathways in MDCK and L cells (Fukuhara et al., 2003, 

2004). In addition, Cdc42 Rho GTPase and MAPK signaling 

pathways have been suggested to be involved in varicosity for-

mation (Hu et al., 2004; Nakata et al., 2005; Udo et al., 2006). 

Therefore, to determine which signaling pathways may be in-

volved in PRV-induced varicosity formation, the effect of inhib-

itors of different signaling pathways (Rho GTPase and MAPK 

signaling pathways) were tested for their effect on PRV-induced 

varicosity formation. A broad-range inhibitor of small Rho 

 GTPase signaling (50 ng/ml Clostridium diffi cile toxin B) as well 

as specifi c inhibitors of Rho (30 μM Y27632), Rac1 (100 μM 

Rac1 inhibitor), or Cdc42 (2 μM secramine A) signaling were 

used. The role of MAPK signaling was examined by using in-

hibitors for extracellular signal–regulated kinase (ERK) signaling 

(10 μM U0126), JNK signaling (20 μM JNK inhibitor II), 

and p38 signaling (20 μM SB203580). General inhibition of 

small Rho GTPase signaling as well as specifi c inhibition of 

Cdc42 signaling suppressed varicosity formation to a level that 

was not signifi cantly different from mock-infected cultures, 

whereas specifi c inhibition of Rho or Rac1 signaling had no ob-

vious effect (Fig. 4 A). Inhibition of p38 MAPK signaling also 

resulted in a strong reduction of varicosity formation, in con-

trast to inhibition of ERK or JNK MAPK signaling (Fig. 4 B). 

These data suggest that PRV activates varicosity formation via 

signaling pathways dependent on Rho GTPase (in particular 

Cdc42) and MAPK (in particular p38).

PRV-gD–induced varicosities serve 
as axonal exit sites for PRV
The inner chamber of the TG cultures does not consist solely of 

TG neurons but also contains many nonneuronal cells, which 

form a monolayer in the inner chamber, in which the TG neu-

rons are dispersed. When the inner chamber of TG neuronal 

cultures was stained for PRV antigens at 24 h (or later) after in-

oculation with WT-PRV in the outer chamber, viral antigen–

positive nonneuronal cells were observed aligning the axons of 

PRV-infected TG neurons. Interestingly, single-infected non-

neuronal cells were almost invariably (88%) juxtaposed to vari-

cosities (Fig. 5). Spread of PRV from varicosities to neighboring 

nonneuronal cells could not be blocked by neutralizing anti-

bodies (unpublished data), indicating that it occurs via direct 

cell–cell spread. These data indicate that egress of infectious vi-

rus along the axon shaft occurs specifi cally at varicosities.

Discussion
The neurotropic behavior of α-herpesviruses is of crucial impor-

tance for the pathogenicity of these viruses, allowing them to es-

tablish lifelong latency and cause central nervous disorders, 

encephalitis, and recurrent disease. Neurons of the TG repre-

sent crucial target neurons for many α-herpesviruses, including 

HSV-1, PRV, and BoHV-1. The exact cell biology underlying 

the  interactions of α-herpesviruses with neurons, especially TG 

neurons, remains far from fully understood. Here, we used an 

in vitro model to study the interaction of an α-herpesvirus (PRV) 

with TG neurons of its corresponding host (the pig). We report 

a novel aspect of the cell biology of α-herpesvirus interaction with 

TG neurons. We found that the interaction of PRV with axons of 

porcine TG neurons triggers the formation of synaptic boutons 

(varicosities) along the axons of these neurons. To our knowl-

edge, this is the fi rst paper reporting that a virus infection stimu-

lates the formation of varicosities. In addition, we show that the 

viral envelope protein gD is responsible for the induction of 

varicosities, probably via an interaction with the entry receptor 

 nectin-1 or nectin-like molecules; that Cdc42 Rho GTPase and 

p38 MAPK signaling pathways are involved; and that virus egress 

along the axon shaft of infected TG neurons occurs frequently 

and specifi cally at these varicosities. These observations open the 

intriguing possibility that the virus has evolved a strategy to facil-

itate spread of progeny virus from TG neurons by inducing vari-

cosities at the time of virus attachment and entry in axons.

Figure 4. Cdc42 Rho GTPase and p38 MAPK signaling pathways are in-
volved in 𝛂-herpesvirus–induced varicosity formation. Percentage of axons 
with varicosities in mock-treated two-chamber models or at 16 h after incu-
bation with an amount of UV-inactivated PRV particles equivalent to 2 × 106 
PFUs of WT-PRV, in the presence of inhibitors directed against (A) small Rho 
GTPases (C. diffi cile toxin B), Rho (Y27632), Rac1 (Rac1 inhibitor), or 
Cdc42 (secramine A) or (B) ERK (U0126), JNK (JNK inhibitor II), or p38 
MAPK signaling (SB203580). Data shown represent means ± SEM of trip-
licate assays. Percentages indicated by the same letter do not signifi cantly 
differ (α = 0.05).
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An important question is how exactly PRV induces the 

formation of varicosities in porcine TG neurons. We found that 

addition of UV-inactivated PRV (which is able to adhere to and 

penetrate cells but does not start up viral gene expression) or 

a strain of PRV that lacks the envelope protein gB (which is able 

to adhere to but not penetrate cells) to the axons of TG neurons 

still resulted in varicosity formation. This shows that varicosity 

formation is triggered during virus attachment to the axons and 

does not require infection. Interestingly, a PRV strain that lacks 

gD in its envelope (which is also able to adhere to but not 

 penetrate cells) did not induce varicosities, demonstrating an 

 involvement of gD in this process. Moreover, addition of re-

combinant soluble gD to the axons of TG neurons was suffi cient 

to trigger varicosity formation. Together, these data indicate 

that interaction of PRV envelope protein gD with axons of TG 

neurons during virus attachment provides the trigger necessary 

for subsequent formation of varicosities.

How does the interaction of gD with the surface of axons 

lead to varicosity formation? Three classes of receptors for 

α-herpesvirus gD proteins have been described to date: one 

 belongs to the tumor necrosis factor receptor family (i.e., herpes 

virus entry mediator), another class belongs to the immuno-

globulin superfamily (including nectin-1 and -2), and another type 

of receptor consists of modifi ed heparan sulfate (Montgomery 

et al., 1996; Cocchi et al., 1998; Geraghty et al., 1998; Warner 

et al., 1998; Shukla et al., 1999; Spear and Longnecker, 2003).

 Nectin-1 has been suggested to serve as the gD receptor 

 onsensory neurons (like TG neurons) for both HSV and PRV 

(Haarr et al., 2001; Mata et al., 2001; Milne et al., 2001; Richart 

et al., 2003). Nectins are cell adhesion molecules that play impor-

tant roles in the formation of many types of cell–cell junctions, 

 including synapses (Takai et al., 2003). We found that, for both 

of two different nectin-1–specifi c antibodies, addition to the 

axons of TG neurons (as a surrogate ligand for nectin-1 instead 

of gD) resulted in the formation of varicosities. This suggests 

that the interaction between gD and nectin-1 on the axons of 

TG neurons provides the trigger that ultimately culminates in 

the formation of varicosities. This would be consistent with ob-

servations made by Mizoguchi et al. (2002), who showed that 

stimulation of nectin-1 in mouse hippocampus neurons resulted 

in a substantial increase in the number of  synaptophysin- positive 

varicosities. However, at present, we cannot rule out the pos-

sibility that other nectins or nectin-like molecules, in addition 

to or instead of nectin-1 might be relevant to the gD-mediated 

induction of varicosities. Porcine nectin-1 is thus far the only 

porcine entry receptor that has been reported for PRV (Milne 

et al., 2001), but different human forms of the nectin family, like 

nectin-1, nectin-2, and necl-5 (poliovirus receptor), have been 

reported to be gD-binding entry receptors for PRV (Geraghty 

et al., 1998, Connolly et al., 2001).

In addition to a crucial role of the interaction between gD 

and nectin-1 and/or other members of the nectin family for the 

PRV-induced formation of varicosities, we also found that 

Cdc42 Rho GTPase as well as p38 MAPK signaling pathways 

are involved. Inhibition of these signaling pathways strongly 

suppressed PRV-induced varicosity formation. These data are 

consistent with recent indications that the Cdc42 (but not Rho 

or Rac) signaling pathway is involved in serotonin-induced var-

icosity formation in sensory neurons (Udo et al., 2006) and that 

MAPK signaling pathways, such as p38, may play important 

roles during development of varicosities (Hu et al., 2004;  Nakata 

et al., 2005). Further in line with our current observations, it has 

Figure 5. Varicosities serve as axonal exit 
sites for PRV. (A) Confocal images of TG neu-
ronal cultures in the inner chamber of PRV-
 infected two-chamber systems at 24 h after 
inoculation and stained for neurofi lament 68 
(Texas red), PRV antigens (FITC), and nuclei 
(Hoechst 33342). Arrows point to varicosities. 
Bars, 5 μm. (B) Graph shows the percentage 
of single-infected cells that are juxtaposed to 
varicosities, calculated compared with the to-
tal number of single-infected cells. Data shown 
represent means ± SEM of four assays.
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been reported that nectin-1 may signal through Rho GTPase 

pathways, such as Cdc42 and Rac, in MDCK and L cells 

( Fukuhara et al., 2003, 2004). Our current fi ndings that an 

α-herpesvirus, via its envelope gD, stimulates formation of 

 synaptophysin-positive varicosities and that this process in-

volves Cdc42 and p38 MAPK signaling may, therefore, consti-

tute a valuable tool to further dissect the underlying molecular 

mechanisms of varicosity formation and the role of nectin-1 and 

other nectin-like molecules herein.

α-Herpesviruses have evolved different strategies to mod-

ulate the host cell to facilitate virus spread, such as gE-mediated 

targeting of virus particles to cell junctions for spread in polar-

ized cells (Collins and Johnson, 2003; Wisner and Johnson, 

2004) and intercellular virus spread via US3-induced actin rear-

rangements and cell projections (Favoreel et al., 2005).  Although 

future in vivo experiments will be required to fully delineate the 

consequences of our current fi ndings for α-herpesvirus patho-

genesis, we propose that induction of axonal varicosities by 

PRV early in infection of TG neurons may be part of the viral 

strategy to later promote effi cient spread.

Varicosity-mediated spread may lead to egress of 

α-herpesviruses along the axon shaft but may also enhance 

spread of the virus to mucosal surfaces, a crucial step in 

α-herpesvirus pathogenesis. Trigeminal sensory nerve fi bers 

may extend beyond the basement membrane to nearly reach the 

epithelial surface (Finger et al., 1990). These intraepithelial ter-

minal regions of the axon have penetrated the basement mem-

brane and lost their myelin sheath and are prone to varicosity 

formation. Strings of varicosities have been reported to occur 

in these intra epithelial terminal areas of the TG axons in vivo 

(Kondo et al., 1992, Ibuki et al., 1996).

The exact function of α-herpesvirus egress along the 

 entire length of axon shafts is not understood, but PRV egress 

along axons shafts has clearly been demonstrated in vivo in rats 

and was found to occur via direct cell–cell spread, which is in 

line with our current fi ndings (Tomishima and Enquist, 2002). 

Interestingly, this axonal egress in vivo as well as in vitro was 

found to occur at scattered sites (Tomishima and Enquist, 2002; 

Ch’ng and Enquist, 2005). Given our current fi nding that axonal 

egress almost exclusively occurs at varicosities, we hypothesize 

that these scattered sites may correspond to varicosities. In fur-

ther support of this, a recent paper suggests that axonal egress 

of HSV-1 occurs via varicosities in human fetal dorsal root gan-

glia neurons in vitro (Saksena et al., 2006). Transport of progeny 

herpesvirus particles in the axon is believed to either occur via 

 secretory vesicles containing fully matured virions or as subvirion 

particles, where capsids and envelope proteins are transported 

separately and only assemble into mature virions at synapses 

(Tomishima and Enquist, 2002). In our opinion, both scenarios 

can lead to specifi c axonal egress at varicosities, as these struc-

tures have been shown to accumulate secretory vesicles and may 

also constitute functional synapses (Santos et al., 2001).

Virus-induced varicosities endured for at least several 

days (>72 h; unpublished data). It remains to be determined 

whether and when they disappear after the initial infection. 

 Although speculative at this time, it is possible that the virus is 

able to reinduce varicosities over and over again when needed 

during latency/reactivation cycles. Reactivations can lead to 

production and release of infectious virus, which in turn may 

attach to and enter new TG neurons, thereby inducing varicosity 

formation and further promoting virus spread.

It is possible that virus-induced formation of varicosities 

has consequences beyond virus spread. At least a subpopulation 

of synaptophysin-positive varicosities function as sites for neuro-

transmitter release along the axon of different types of neurons 

(Kohara et al., 2001; Pennuto et al., 2002; Morgenthaler et al., 

2003). In line with this, we found that the virus-induced vari-

cosities stain positive for FM1-43, characteristic of intact syn-

aptic transmission. Synaptic transmission was also intact in 

varicosities induced by UV-inactivated PRV or recombinant gD 

of PRV (unpublished data). In this context, it is interesting to 

note that α-herpesvirus infections have been associated with 

hyperexcitability of neurons, possibly involved in acquired 

 epilepsy after HSV encephalitis (Chen et al., 2004). Future in-

vestigations will be designed to further unravel whether the 

PRV-induced formation of synaptically effective varicosities 

lead to changes in excitability of neurons.

In conclusion, we have found that entry of an α- herpesvirus 

in neurons of the TG of its natural host is associated with the in-

duction of synaptic varicosities along the axons. Virus- induced 

varicosity induction depends on viral envelope protein gD and 

on Cdc42 Rho GTPase and p38 MAPK signaling pathways, and 

the virus uses the varicosities as axonal egress sites to spread to 

neighboring cells.

Materials and methods
Viruses and cells
WT-PRV strain Becker, WT-PRV strain Kaplan, and isogenic deletion mutants 
gBnull and gDnull were used (Kaplan and Vatter, 1959; Card et al., 1990; 
Rauh and Mettenleiter, 1991; Rauh et al., 1991). Stocks of phenotypically 
complemented gBnull and gDnull viruses were grown on gB- and gD-
 complementing cell lines. Stocks of phenotypically and genotypically gBnull 
and gDnull viruses were produced by a single round of infection of pheno-
typically complemented gBnull and gDnull viruses on noncomplementing 
swine testicle cells and harvesting the progeny virus from the supernatant.

Antibodies, proteins, and inhibitors
Monoclonal mouse anti-gB (1C11) and anti-gD (13D12) antibodies and 
polyclonal porcine FITC-labeled anti-PRV antibodies were produced as pre-
viously described (Nauwynck and Pensaert, 1995). The monoclonal neu-
ronal markers mouse anti–neurofi lament 68 and rabbit anti– neurofi lament 
200 and the monoclonal synapse marker mouse anti-synaptophysin 
were purchased from Sigma-Aldrich. FITC- and Texas red–labeled goat 
anti–mouse antibodies and Texas red–labeled goat anti–rabbit antibodies 
were obtained from Invitrogen. Biotinylated sheep anti–mouse IgG and 
a  streptavidin-biotinylated horseradish peroxidase complex were pur-
chased from GE Healthcare. Inhibitors C. diffi cile toxin B, Y27632, Rac1 
inhibitor (NSC23766), U0126, SB203580, and JNK inhibitor II were ob-
tained from Calbiochem. Secramine A was used as a specifi c inhibitor for 
Cdc42, as described previously (Pelish et al., 2006). PRV-gDt (Connolly 
et al., 2001) and two monoclonal mouse anti–human antibodies directed 
against different epitopes on the ectodomain of nectin-1 (CK6 and CK41; 
 Krummenacher et al., 2000) were used.

Quantifi cation of gBnull- and gDnull-PRV stocks
The number of virus particles in the gBnull and gDnull stock was estimated 
by optical densitometry, as described previously (Qie et al., 1999; 
 Cheshenko and Herold, 2002). Equal volumes of a serial dilution of a WT-
PRV stock with a known titer and of stocks of the genotypically and pheno-
typically gBnull- and gDnull-PRV strains were subjected to SDS-PAGE under 
nonreducing conditions and Western blotting, followed by detection of 
gB or gD using monoclonal gB- and gD-specifi c antibodies, biotinylated 
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 secondary sheep anti–mouse antibodies, streptavidin-biotinylated horse-
radish peroxidase complex, and 3,3′-diaminobenzidine (Sigma-Aldrich) 
for gB or enhanced chemiluminescence (ECL Western blotting analysis 
 system; GE Healthcare) for gD. All antibodies were diluted in PBS with 
0.1% Tween-20 (Sigma-Aldrich), and blots were washed three times in PBS 
with 0.1% Tween-20 in between different antibody incubations and after 
the  fi nal antibody incubation. Relative amounts of gB and gD in the gDnull 
and gBnull stock, respectively, were compared with the amount of gB and 
gD present in the WT stocks using Quantity One 1-D analysis software 
(Bio-Rad Laboratories).

Immunofl uorescence staining procedures
After being washed in PBS, neuronal cultures in the inner and outer cham-
ber of the two-chamber model were fi xed in 100% methanol for 20 min at 
−20°C, except for cultures that were labeled for synaptophysin, which 
were fi xed using 4% paraformaldehyde in PBS for 10 min and subse-
quently permeabilized in 0.2% Triton X-100 (Sigma-Aldrich) in PBS for 
2 min. All antibodies were diluted in PBS to 1:100. Cells were incubated 
with each antibody for 1 h at 37°C and were washed two times in PBS in 
between all incubation steps and after the last incubation step. When nec-
essary, nuclei were stained using 10 μg/ml Hoechst 33342 (Invitrogen) 
for 10 min before the fi nal washing steps.

Cultivation, inoculation, and analysis of primary TG neuronal cultures 
in a two-chamber model
Porcine TG neurons were obtained as described previously (Geenen et al., 
2005) and seeded in an in vitro model based on the “Campenot” system 
(Campenot, 1977), which allows simulation of the in vivo route of neuronal 
infection (De Regge et al., 2006). In brief, porcine TG were excised from 
4–6-wk-old piglets and dissociated by enzymatic digestion with 0.2% col-
lagenase A (Roche). The harvested cells were resuspended in culture 
 medium (basic culture medium without glutamine) and supplemented with 
30 ng/ml nerve growth factor (Sigma-Aldrich) and seeded in the inner 
chamber of an in vitro two-chamber model. The two-chamber system con-
sists of a polyallomer tube that is fi xed with silicon grease on a collagen-
coated cover glass inserted in a 6-well plate (Nunc). The inside of the tube 
forms the inner chamber, and the outside forms the outer chamber. The sili-
con barrier prevents diffusion of medium or virus from one chamber to the 
other (De Regge et al., 2006). 1 d after seeding, cultures were washed 
with RPMI (Invitrogen) to remove nonadherent cells and, from then on, cul-
ture medium was changed three times a week.

After 2–3 wk of cultivation, when clear axon growth could be 
observed in the outer chamber, the outer chamber was inoculated with 
2 × 106 PFUs of WT-PRV or with an equivalent number of UV-inactivated, 
 gBnull- or gDnull-PRV particles. In some experiments, the outer chamber 
was incubated with soluble PRV-gD (ranging from 0.001 to 10 μg/ml), 
with antibodies directed against nectin-1 (CK6, ranging from 0.1 to 
100 μg/ml, or CK41, 100 μg/ml) or with an isotype-matched (IgG1) 
 control antibody directed to the viral envelope gD (100 μg/ml 13D12; 
 Nauwynck and Pensaert, 1995; Krummenacher et al., 2000).

The percentage of axons showing varicosities after different treat-
ments was determined by fl uorescent labeling using anti-neurofi lament an-
tibodies and examination of 30 axons with outgrowth in the outer chamber 
of different two-chamber models for the presence of multiple (>5/250 μm 
axon) swellings that were at least 1.5 times the diameter of the axon. Data 
shown represent means ± SEM of triplicate assays.

FM1-43–labeling procedure
The fi ring capacity of the induced varicosities was determined by loading 
the neurons with FM1-43 (Invitrogen), basically as described before 
(Mizoguchi et al., 2002). After 2–3 wk in culture, the outer chamber was 
treated for 24 h with 2 × 106 PFUs of WT-PRV, an equivalent number of 
UV-inactivated PRV particles, or 10 μg/ml soluble PRV-gD. Then, the inner 
chamber was washed with Hanks’ balanced salt solution supplemented 
with 100 mM KCl and 1.5 mM CaCl2 for 1 min. The neurons were incu-
bated with culture medium containing 100 mM KCl and 20 μM FM1-43 
for 10 min. After being washed with Hanks’ balanced salt solution for 
15 min, cultures were mounted on coverslips without fi xation and exam-
ined by confocal microscopy.

Inhibitor studies
To examine the effect of different inhibitors on varicosity formation, both 
the inner and outer chamber of the two-chamber system were pretreated 
with culture medium supplemented with the respective inhibitor for 2 h. 
 Afterward, the outer chamber was incubated with UV-inactivated PRV 
 particles equivalent to 2 × 106 PFUs of WT-PRV in the presence of the 

 inhibitor. After an incubation period of 16 h, the two-chamber system was 
methanol fi xed and stained, and the percentage of axons showing varicos-
ities was determined as described (see Cultivation, inoculation, and 
analysis…).

Quantifi cation of single-infected cells juxtaposed to varicosities
Single-infected cells were scored as juxtaposed to a varicosity when the 
signal of the viral antigens (FITC signal) contacted the varicosity (Texas red 
signal), as seen in two-chamber models fi xed at 24 h after inoculation with 
2 × 106 PFUs of WT-PRV and stained with polyclonal FITC-labeled anti-PRV 
antibodies and the neuronal cell marker anti–neurofi lament 68 (Texas red). 
50 single-infected cells were analyzed, and data shown represent the 
mean ± SEM of four assays.

Confocal microscopy
Stainings were analyzed on a laser-scanning spectrum confocal system 
(TCS SP2; Leica Microsystems GmbH) linked to a microscope (DM IRBE; 
Leica Microsystems GmbH). Images were taken using a 63× oil objective 
(NA 1.40–0.60) at room temperature and using confocal acquisition soft-
ware (Leica Microsystems GmbH). Adjustments of brightness and contrast 
were applied to the entire images and were done using Photoshop (Adobe).

Statistics
The mean percentages of axons displaying varicosities after the different 
treatments were compared with an analysis of variance and a least signifi -
cant difference post hoc test for a multiple comparison of means (α = 0.05).
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