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Introduction
Fas receptor apoptotic signaling is critical for normal develop-

ment and tissue homeostasis (Nagata, 1999). At the molecular 

level, Fas receptor is activated by the binding of either membrane-

bound or -soluble Fas ligand (FasL), which induces receptor 

oligomerization (Schneider et al., 1998; Algeciras-Schimnich 

et al., 2002). Fas receptor oligomerization stimulates formation 

of the death-induced signaling complex (DISC), which is mini-

mally composed of the adaptor Fas-associated death domain 

protein and caspase 8/10 (Worth et al., 2006). Caspase 8/10 acti-

vation can lead to direct activation of the effector caspases, such 

as caspase 3. In some cells, the activation of effector caspases is 

amplifi ed by engaging the mitochondrial pathway via the Bcl-2 

family member Bid (Barnhart et al., 2003). Caspase-dependent 

Bid truncation leads to translocation of the protein to the mito-

chondria, where it promotes the release of proapoptotic factors 

such as cytochrome c. Proapoptotic proteins released from mito-

chondria stimulate formation of the apoptosome and effi cient 

caspase 3 activation (Jiang and Wang, 2004).

In addition to activating the apoptosome, cytochrome c 

 released from mitochondria can bind and modulate the activity 

of the inositol 1,4,5-trisphosphate receptor (IP3R), which is 

an ER-resident calcium channel (Boehning et al., 2003; 

Beresewicz et al., 2006). As such, Fas-mediated apoptosis requir-

ing engagement of the mitochondrial pathway may be associated 

with IP3R-dependent signaling. However, although it has been 

suggested that elevated cytosolic calcium may contribute to the 

progression of Fas apoptosis (Oshimi and Miyazaki, 1995; 

Scoltock et al., 2000; Ayub et al., 2004; Boehning et al., 2005), the 

molecular mechanisms are unknown.

We show that effi cient Fas signaling requires calcium re-

lease from the ER in two separate phases mediated by distinct 

but interdependent mechanisms. The fi rst phase of calcium ele-

vation is rapid and associated with activation of PLC-γ1, subse-

quent IP3 generation, and calcium release via IP3R channels. 

The second phase of calcium elevation occurs over the course of 

hours and is mediated by cytochrome c binding to IP3R. Blocking 

either phase of calcium elevation inhibits FasL-mediated apop-

tosis, highlighting possible therapeutic targets for disorders 

associated with this apoptotic pathway.

Results and discussion
Jurkat T-lymphoma cells are sensitive to FasL-induced apoptosis 

in a manner dependent on engagement of the mitochondrial 

pathway (Scaffi di et al., 1998). To determine whether IP3R acti-

vation contributes to FasL-mediated cell death in Jurkat cells, 

we fi rst examined whether IP3, which is the obligate ligand of 

IP3R, is produced after treatment with FasL. Jurkat cells were 

transfected with the phosphoinositide 4,5-bisphophate biosensor 

Requirement of biphasic calcium release from the 
endoplasmic reticulum for Fas-mediated apoptosis

Ann L. Wozniak,1 Xinmin Wang,1 Emily S. Stieren,1 Shelby G. Scarbrough,2 Cornelis J. Elferink,2 

and Darren Boehning1

1Department of Neuroscience and Cell Biology and 2Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555

 F
as receptor is a member of the tumor necrosis factor-α 

family of death receptors that mediate physiologic 

apoptotic signaling. To investigate the molecular 

mechanisms regulating calcium mobilization during Fas-

mediated apoptosis, we have analyzed the sequential steps 

leading to altered calcium homeostasis and cell death in 

response to activation of the Fas receptor. We show that 

Fas-mediated apoptosis requires endoplasmic reticulum–

mediated calcium release in a mechanism dependent on 

phospholipase C-γ1 (PLC-γ1) activation and Ca2+ release 

from inositol 1,4,5-trisphosphate receptor (IP3R) channels. 

The kinetics of Ca2+ release were biphasic, demonstrating 

a rapid elevation caused by PLC-γ1 activation and a de-

layed and sustained increase caused by cytochrome c 

binding to IP3R. Blocking either phase of Ca2+ mobilization 

was cytoprotective, highlighting PLC-γ1 and IP3R as possi-

ble therapeutic targets for disorders associated with 

Fas signaling.

Correspondence to Darren Boehning: dfboehni@utmb.edu

Abbreviations used in this paper: DISC, death-induced signaling complex; 
IP3, inositol 1,4,5-trisphosphate; IP3R, IP3 receptor.

The online version of this article contains supplemental material.

D
ow

nloaded from
 http://jcb.rupress.org/jcb/article-pdf/175/5/709/1886792/jcb_200608035.pdf by guest on 24 April 2024



JCB • VOLUME 175 • NUMBER 5 • 2006 710

comprised of the pleckstrin homology domain of PLC-δ1 

coupled to GFP (PLCδ1PH-GFP; Varnai and Balla, 1998). This 

protein localizes to the plasma membrane under basal condi-

tions, but rapidly redistributes to the cytosol after treatment with 

agonists that stimulate IP3 production (Varnai and Balla, 1998; 

Holz et al., 2000). FasL stimulation of Jurkat cells resulted in 

rapid dissipation of PLCδ1PH-GFP fl uorescence from the 

plasma membrane, indicating that FasL stimulates IP3 produc-

tion (Fig. 1 A). The ratio of plasma membrane to cytosol fl uo-

rescence oscillates after an initial sharp decrease, which is 

consistent with other agonists coupled to PLC activation and 

oscillatory calcium release events (Hirose et al., 1999; Young 

et al., 2003). This redistribution is not seen in Jurkat cells lack-

ing PLC-γ1 expression (PLC-γ1 null; Fig. 1 B; Irvin et al., 

2000). A marker of PLC-γ1 activation is phosphorylation of 

tyrosine residue 783 (Kim et al., 1990; Kim et al., 1991). FasL 

stimulation resulted in a time-dependent increase in phos-

phorylation of tyrosine 783 (Fig. 1, C and D), indicating that 

PLC-γ1 is activated in response to FasL. There was no PLC-γ1 

immunoreactivity in lysates prepared from PLC-γ1–null cells 

(not depicted).

To examine whether PLC-γ1 activation is associated with 

calcium release, we monitored alterations in intracellular cal-

cium in response to FasL stimulation in wild-type and PLC-γ1–

null Jurkat cells. FasL stimulated immediate oscillations in 

cytosolic calcium (Fig. 1 E). Importantly, PLC-γ1–null cells 

did not release calcium in response to FasL treatment (Fig. 1 F). 

Stable expression of wild-type PLC-γ1 in PLC-γ1–null cells 

(Irvin et al., 2000) rescued calcium release in response to FasL 

application (Fig. 1 G).

FasL stimulation of Jurkat cells causes release from 

mitochondria in cytochrome c, which subsequently binds IP3R 

channels (Boehning et al., 2005). In subcellular fractionation 

experiments, this is observed as a translocation of cytochrome c 

immunoreactivity from a 10,000 g mitochondrial-enriched 

pellet to a 100,000 g ER-enriched and mitochondria-free pellet 

(Fig. 1 H; Jurkat WT; Boehning et al., 2003; Boehning et al., 

2005). Cytochrome c release was not observed in PLC-γ1–null 

cells upon FasL treatment, suggesting that PLC-γ1 activation 

and calcium release are upstream of mitochondrial permeabili-

zation (Fig. 1 H; PLC-γ1 null). Consistent with this observa-

tion, PLC-γ1–null cells were defective in caspase-3 activation 

(Fig. 1 I) and were resistant to cell death induced by FasL (Fig. 

1 J). Stable expression of wild-type PLC-γ1 in PLC-γ1–null 

cells restored cytochrome c release, caspase 3 activation, and 

cell death induced by FasL (Fig. 1, H to J).

To investigate if IP3R channels are responsible for calcium 

mobilization downstream of PLC-dependent IP3 production, we 

transiently knocked down the expression of IP3R-1 by RNAi. 

This isoform is the predominant isoform expressed in Jurkat 

cells (Jayaraman and Marks, 1997). Because of the low (�10%) 

transfection effi ciency of Jurkat cells, biochemical determina-

tion of RNAi effi cacy was fi rst tested in HeLa cells (Fig. 2 A). 

RNAi transfection resulted in a substantial reduction in IP3R-1 

levels, which could be rescued by transfection of the rat IP3R-1 

gene, which has several nucleotide changes within the RNAi-

targeted sequence (see Materials and methods). Expression of 

another closely related IP3R isoform (IP3R-3) abundantly ex-

pressed in HeLa cells was unaffected, demonstrating specifi city. 

To test whether knockdown of IP3R-1 in Jurkat cells affected 

calcium release induced by FasL stimulation, we cotransfected 

RNAi and YFP and examined single-cell calcium responses 

simultaneously in RNAi-transfected and nontransfected cells. 

IP3R-1 knockdown cells were resistant to calcium release 

induced by FasL (Fig. 2 B). Control RNAi-transfected cells 

responded similarly to untransfected controls (Fig. 2 C). Over-

expression of rat IP3R-1 rescued calcium release induced by 

FasL in IP3R-1 knockdown Jurkat cells (Fig. 2 D). IP3R-1 

Figure 1. Requirement of PLC-𝛄1 for FasL-
 mediated apoptosis in Jurkat cells. (A) Plasma 
membrane (PM) to cytosol translocation of the 
phosphoinositide 4,5-bisphophate biosensor PLCδ-
PH-GFP in wild-type Jurkat cells. (B) Jurkat cells 
lacking PLC-γ1 expression (Irvin et al., 2000). 
(C) PLC-γ1 activation indicated by phosphotyro-
sine 783 immunoblotting (p783 PLC-γ1) and total 
PLC-γ1 as a function of time. (D) Quantifi cation of 
PLC-γ1 phosphorylation normalized to control. 
(E) Calcium response of Jurkat cells treated with 
10 ng/ml FasL. Shown is a single-cell response 
representative of multiple determinations. Single-
cell calcium responses of PLC-γ1–null (F) and PLC-
γ1–rescued cells (G). (H) Cytochrome c release 
from mitochondria and translocation to the ER 
in response to FasL stimulation for 0, 12, or 24 h 
in WT, PLC-γ1–null, or PLC-γ1–rescued cells. 
Mito/P2, mitochondrial-enriched fraction; cyt/S3, 
cytosol fraction; ER/P3, ER-enriched fraction. 
(I) Caspase-3 activity in WT, PLC-γ1–null, and PLC-
γ1–rescued cells. (J) Cell death (propidium  iodide–
positive cells as a percentage of the total) in WT, 
PLC-γ1–null, and PLC-γ1–rescued cells. Data is 
presented as the mean ± the SEM. 
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knockdown cells were also resistant to cell death induced by 

exposure to FasL, an effect rescued by overexpression of rat 

IP3R-1 (Fig. 2 E). Longer incubations of IP3R knockdown cells 

with FasL resulted in increased cell death, suggesting delayed 

activation of alternative pathways, such as mitochondrial-

 independent caspase activation (Scaffi di et al., 1998), residual 

IP3R activities, or RNAi turnover and loss of down-regulation. 

PLC-γ1–null cells, with or without treatment with IP3R RNAi, 

are refractory to FasL-induced cell death at all time points, 

suggesting that recovery of cell death in IP3R RNAi-treated 

cells is caused by loss of down-regulation (Fig. 2 E). These 

results indicate that activation of IP3R channels and calcium 

release from internal stores are downstream effectors of PLC-γ1 

activation after FasL stimulation.

We hypothesized that cytochrome c binding to IP3R 

contributes to changes in calcium levels during FasL-mediated 

apoptosis, as we have previously shown for staurosporine-

 induced apoptosis (Boehning et al., 2003). It can be predicted 

that cytochrome c binding to IP3R would occur downstream of 

PLC-γ1 activation and mitochondrial permeabilization with 

kinetics similar to those observed biochemically for cytochrome c 

release (12–24 h; Fig. 1 H). Blocking cytochrome c binding 

to IP3R with a dominant-negative peptide (B-IP3RCYT) in-

hibits staurosporine-induced caspase activation and cell death 

(Boehning et al., 2005). We predicted B-IP3RCYT would not 

affect rapid PLC-γ1–dependent calcium release events, but 

would block potential sustained elevations in cytosolic calcium 

(Fig. 3 A). Consistent with these hypotheses, B-IP3RCYT or 

a peptide with two point-mutations eliminating cytochrome c 

binding (B-IP3RCYTmut) had no effect on initial calcium re-

lease events induced by FasL (Fig. 3, B and C). Treatment of 

Jurkat cells for 24 h with FasL resulted in increased basal cyto-

solic calcium (Fig. 3 D), which is consistent with previous studies 

(Scoltock et al., 2000). Pretreatment with B-IP3RCYT, but not 

B-IP3RCYTmut, blocked this late elevation in cytosolic cal-

cium (Fig. 3 D). FasL treatment of Jurkat cells is also associated 

with rapid alterations in mitochondrial calcium immediately 

after FasL treatment, and sustained increases in mitochondrial 

calcium 24 h after FasL treatment (Fig. S1 and Video 1, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200608035/DC1). 

B-IP3RCYT selectively inhibited the sustained increases in 

mitochondrial calcium at 24 h. Finally, preincubation with 

B-IP3RCYT, but not B-IP3RCYTmut, attenuated cytochrome c 

release and cell death in response to FasL stimulation (Fig. 3, 

E and F). Although not detectable in Fig. 3 E, we predict 

that small amounts of cytochrome c are released in the pres-

ence of B-IP3RCYT, even though cell-wide cytochrome c re-

lease is blocked. These results suggest that PLC-γ1 activation 

is critical to the initial oscillatory phase of calcium elevation, 

Figure 2. Knockdown of IP3R-1 abrogates calcium release and apoptosis 
induced by Fas ligand. (A) Knockdown of IP3R-1 expression in HeLa cells 
by RNAi and rescue by overexpression of the rat IP3R-1 gene. IP3R-3 ex-
pression serves as a loading control. (B–D) Cytosolic calcium responses to 
10 ng/ml FasL in RNAi, control RNAi, or RNAi-rescued Jurkat cells. Black 
traces, nontransfected (YFP-negative) cells; green traces, transfected (YFP-
positive) cells from the same fi eld. (E) Cell death in wild-type and PLC-γ1–null 
YFP-positive cells ± indicated RNAi. cRNAi, control RNAi. *, P = 0.0002 
versus YFP only. Although not indicated on the graph, PLC-γ1–null treatment 
groups had signifi cantly lower cell death at 24 and 36 h versus YFP only 
(P < 0.0001). Data is presented as the mean ± the SEM.

Figure 3. Cytochrome c binding to IP3R con-
tributes to a late phase of calcium elevation in 
response to Fas ligand. (A) Schematic diagram 
depicting the predicted steps leading to cal-
cium mobilization during FasL stimulation. 
B-IP3RCYT (in red) blocks cytochrome c bind-
ing to IP3R (Boehning et al., 2005). (B and C) 
Calcium responses in cells pretreated with 
400 nM B-IP3RCYT or B-IP3RCYTmut, which 
does not bind cytochrome c. (D) Cytoplasmic 
calcium concentration in cells treated for 24 h 
with FasL in the presence or absence of 400 nM 
of the indicated peptide. (E) Subcellular frac-
tionation of cells stimulated with FasL for 12 or 
24 h and pretreated with vehicle or 400 nM 
peptide. (F) Cell death curve of control or 
peptide-pretreated cells. Data is presented as 
the mean ± the SEM.
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and cytochrome c binding to IP3R is necessary for a second, 

temporally delayed increase in cytosolic and mitochondrial cal-

cium. It appears that both phases are required for optimal Fas 

signaling, as specifi c blockage of either pathway is cytoprotective. 

It has been shown that caspase-3 cleavage of the IP3R is 

associated with apoptotic calcium release (Hirota et al., 1999; 

Assefa et al., 2004). Treatment of Jurkat cells with the caspase-3 

inhibitor z-DEVD-fmk had no effect on calcium mobilization 

in response to FasL, suggesting this pathway is not a required 

component of FasL-induced calcium release (Fig. S2).

To determine if calcium is required for other models of 

FasL-mediated apoptosis, we tested whether primary mouse 

hepatocytes released calcium in response to FasL stimulation. 

FasL treatment of hepatocytes was associated with calcium re-

lease that could be inhibited with the PLC inhibitor U73122, but 

not the inactive analogue U73343 (Fig. 4, A–C). The kinetics of 

release were distinct from those observed in Jurkat cells, with a 

nonoscillatory rise which diminished after �50 min. Interestingly, 

we observed a spike in cytosolic and in particular nuclear cal-

cium in individual cells after the initial rise in cytosolic calcium 

(Fig. 4 A, arrowheads), which would likely infl uence FasL-

 dependent nuclear events such as gene transcription. FasL treat-

ment of hepatocytes for 24 h was associated with cytochrome c 

release and translocation to both the ER and cytosol, and these 

effects were reversed by B-IP3RCYT treatment (Fig. 4 D; com-

pare 24 and 24P, where P indicates peptide treatment). The pres-

ence of cytochrome c in the cytosol in hepatocytes may refl ect 

saturation of IP3R channels with cytochrome c at 24 h caused by 

the low density of IP3Rs in this cell type (Wojcikiewicz, 1995). 

We also observed a partial loss of IP3R-1 immunoreactivity after 

FasL treatment (Fig. 4 D), which may be caused by caspase-3 

cleavage. Cell death induced by FasL was inhibited by U73122 

or B-IP3RCYT, suggesting that the PLC activation and cyto-

chrome c binding to IP3R are both required for FasL- mediated 

apoptosis in hepatocytes (Fig. 4 E).

The molecular basis for calcium mobilization during 

apoptosis has remained enigmatic. We suggest a linear sequence 

of events, which lead to calcium-dependent mitochondrial per-

meabilization, caspase activation, and cell death during FasL-

mediated apoptosis (Fig. 5). FasL binding to the Fas receptor 

recruits the canonical components of the DISC complex, and, 

concurrently, PLC-γ1 is activated by an unknown mechanism. 

These two events occur on the order of seconds to minutes, 

Figure 4. FasL-mediated apoptosis in primary hepatocytes requires PLC 
activity and cytochrome c binding to IP3R. (A) Fura-2 images (340 nm, 
380 nm, and pseudocolored ratio) of a cluster of hepatocytes. Increases in 
nuclear calcium are indicated by black arrowheads. Time in minutes is indi-
cated on each image. (B) Quantifi ed FasL-stimulated calcium release in 
 primary hepatocytes. Data presented is the mean of 40 cells from a single 
experiment, representative of three separate determinations. (C) Calcium re-
sponses in hepatocytes pretreated (30 min) with the PLC inhibitor U73122 
(2 μM) or inactive control U73343 (in red). (D) Cytochrome c release and 
translocation to ER in primary hepatocytes treated for 24 h with FasL in the 
presence or absence of B-IP3RCYT (400 nM, indicated in red as 24P). 
 Densitometry of cytochrome c immunoreactivity is given below the blots. CytOx, 
mitochondrial marker cytochrome c oxidase; HO2, microsomal marker 
heme oxygenase-2. (E) Cell death of primary hepatocytes treated with FasL 
in the presence or absence of 2 μM U73122 or 400 nM B-IP3RCYT. Indi-
cated P values are versus FasL only. Data is normalized to basal cell death 
(indicated by a line at 100%). Data is presented as the mean ± the SEM.

Figure 5. Model integrating calcium mobilization into the Fas signaling 
pathway. Fas receptor stimulation causes rapid formation of the DISC com-
plex, minimally comprising Fas-associated death domain protein (FADD) 
and initiator caspases 8/10. Our results suggest a rapid activation of PLC-
γ1, leading to IP3 generation and calcium release from IP3R channels (indi-
cated in red). Calcium release from IP3R stores combined with increased 
mitochondrial permeability further amplify cytochrome c release. A tempo-
rally distinct chronic elevation of cytoplasmic calcium also occurs over the 
course of hours, mediated by cytochrome c binding to IP3R.
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leading to calcium release from internal stores, elevated mito-

chondrial calcium, and Bid-mediated increases in mitoch-

ondrial permeability (Csordas et al., 2002). FasL- mediated 

apoptosis might be reversible at this stage, providing a critical 

control point. The second step occurs over the course of min-

utes to hours, and is characterized by limited cytochrome c 

release from mitochondria and binding to IP3R. This would 

sensitize the channel to increased calcium release (Boehning 

et al., 2003), ultimately resulting in depletion of ER calcium, 

mitochondrial calcium overload, and global cytochrome c re-

lease from all mitochondria. Consistent with the critical role of 

calcium in regulating FasL-mediated apoptosis, the calcium 

chelator BAPTA-AM suppresses cytochrome c release, caspase 

activation, and cell death in response to FasL (Fig. S3, A–C, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200608035/DC1). 

Furthermore, if ER-derived calcium was critical for cytochrome c 

release from mitochondria and cell death in Jurkat cells, it 

would be expected that passive depletion of ER stores by thap-

sigargin would also cause cytochrome c release and cell death. 

We fi nd that thapsigargin dose-dependently results in cyto-

chrome c release, caspase activation, and cell death in Jurkat 

cells (Fig. S3, D–F). Finally, reducing the functional expression 

of PLC-γ1 and IP3R or blocking cytochrome c to IP3R is cyto-

protective, suggesting that these proteins may be useful drug 

targets for treating disorders in Fas or other calcium-dependent 

apoptotic pathways.

Materials and methods
Cell lines
Jurkat T cell leukemia and Jurkat derivatives j.gamma1 and j.gammaWT 
were obtained from the American Type Culture Collection. Primary mouse 
hepatocytes were prepared as described elsewhere (Park et al., 2005) 
and plated on collagen-coated plates or coverslips. Primary hepatocytes 
were used within 24 h to limit dedifferentiation.

Caspase activity
Caspase activity was determined as previously described (Boehning et al., 
2003) using z-DEVD-R110 as the protease substrate at a fi nal concentra-
tion of 50 μM (American Peptide Company).

PLC activity
Cells were transiently transfected with PLCδ-PH-GFP (Varnai and Balla, 
1998), plated on poly-L-lysine–coated coverslips, and imaged at 25°C. 
PLC�-PH-GFP was a gift from T. Balla (National Institutes of Health, 
Bethesda, MD). Images were acquired every 5 s using MetaFluor imaging 
software (Molecular Devices). Fas ligand-bearing vesicles (Millipore) were 
administered at 1 ng/ml. Quantifi cation of PLC activity was calculated as 
a ratio of plasma membrane to cytosol fl uorescence over time, as described 
elsewhere (Balla and Varnai, 2002). For immunoblot analysis, Jurkat cells 
were treated with 1 ng/ml FasL for the indicated times, and lysates were 
probed using phosphotyrosine 783-PLC-γ1 and PLC-γ1 antibodies (Cell 
Signaling Technologies).

Calcium imaging
Calcium measurements were performed as previously described (Boehning 
et al., 2005). Fura-2–loaded cells were allowed to attach to poly-L-lysine–
coated coverslips and imaged at 25°C. Cells were treated with 10 ng/ml 
FasL vesicles, and images were acquired every 3 s for 2,000 s. Jurkat cells 
respond heterogeneously to FasL (Boehning et al., 2005), thus, we dis-
played representative single-cell traces. Cells with spontaneous release ac-
tivity in the absence of FasL were identifi ed by imaging at least 100 s 
before FasL addition and were eliminated from analysis. In experiments 
where DNA or RNAi were transfected into Jurkat cells, expressing cells 
were identifi ed by cotransfecting YFP. Nonexpressing cells were imaged 
 simultaneously with expressing cells as internal controls. Each experiment 

was repeated a minimum of fi ve times, comprising hundreds of single-cell 
traces. In Figs. 3 D and S2 B, cells treated for 24 h with FasL were loaded 
with Fura-2 and cytoplasmic calcium imaged in three separate fi elds, each 
comprising 50–100 cells. The mean of the three fi elds comprised one data 
point. The experiment was repeated an additional two times and presented 
as the SEM of three experiments. Our previous study indicated that 
B-IP3RCYT loading into HeLa cells may augment staurosporine-induced cal-
cium elevations (Boehning et al., 2005). Testing B-IP3RCYT in multiple 
apoptosis model systems, including Jurkat cells in this study, indicated that 
this effect is unique to that particular model system.

Image acquisition and manipulation
Fura-2 and GFP images were acquired on an inverted microscope (TE2000; 
Nikon) using a 60× oil immersion objective (SuperFluor; Nikon) with a 1.3 
NA. All imaging was performed at 25°C in 107 mM NaCl, 7.2 mM KCl, 
1.2 mM MgCl2, 1 mM CaCl2, 11.5 mM glucose, 0.1% bovine serum albu-
min, and 20 mM Hepes 7.2. Images were captured with a camera (Cool-
SNAP HQ; Roper Scientifi c). Rapid fi lter changes for ratiometric imaging 
were computer controlled via a 10–2 fi lter wheel controller (Lambda; 
 Sutter) and MetaFluor data acquisition and analysis software. Raw data 
was acquired with MetaFluor and graphed in Sigma Plot (SPSS Scientifi c). 
Fluorescent images were pseudocolored using the IMD display mode in 
MetaFluor for display purposes in Fig. 4, and assembled without further 
manipulation in Photoshop (Adobe).

Subcellular fractionation
Subcellular fractionation was performed as described previously (Boehning 
et al., 2003). Fractionation purity in each experiment was determined by 
blotting with cytochrome c oxidase (mitochondria), heme oxygenase (ER), 
and lactate dehydrogenase (cytosol).

Cell death
Cell death was quantifi ed as previously described (Boehning et al., 2005), 
either by propidium iodide staining, or, in the case of BODIPY-labeled 
peptide-treated samples, by trypan blue staining. The number of dead cells 
was determined either by manual counting in a light microscope or by fl ow 
cytometry. Cell death in transfected cells was determined by cotransfecting 
YFP. YFP was retained in dying cells, including propidium iodide–positive 
cells, allowing the determination of the effects of transfection on cell death. 
As such, there was no signifi cant difference in the relative amount of cell 
death between nontransfected and YFP only–transfected cells (compare 
Fig. 2 E, YFP, with Fig. 1 J, Jurkat WT, or Fig. 3 F, FasL).

RNAi
Stealth-modifi ed (Invitrogen) double-stranded RNA against the human IP3R-1 
gene (sense sequence, 5′-G A G G G A U C G A C A A A U G G A U U U A U U A -3′) 
targeting ORF nucleotides 314–338 was purchased from Invitrogen. Con-
trol RNA was similar, but with several deletions and insertions (sequence, 
5′-G A G U A G C C A A A U A G G U A U U A G G U U A -3′). Transfection with Lipo-
fectamine 2000 (Invitrogen) of various doses of RNA was used to determine 
that 100 pmol of double-stranded RNA complex per well of a six-well dish 
gave maximum knockdown. Knockdown was readily evident at 24 and 
48 h. The blot in Fig. 2 A is 24 h after transfection. Rescue of RNAi knock-
down was accomplished by overexpression of the rat IP3R-1 gene, which has 
three substitutions within the targeted sequence (rat sequence, with sequence 
changes in bold, 5′-G A G G G A U C U A C G A A U G G A U U U A U C A -3′).

Peptide synthesis
The IP3RCYT sequence is D N K T V T F E E H I K E E H N , comprising amino acids 
2,567–2,582 of human IP3R-1. IP3RCYTmut replaces two glutamic acid 
residues critical for binding (Boehning et al., 2005) with glutamine, D N K T-
V T F Q Q H I K E E H N . A C-terminal cysteine was added during synthesis to 
facilitate coupling to BODIPY 577/618 via a maleimide linkage, as previ-
ously described (Boehning et al., 2005). IP3RCYT and IP3RCYTmut were 
synthesized by the Protein Chemistry Laboratory core facility at the Univer-
sity of Texas Medical Branch.

Statistical analysis
All data is presented as the mean ± the SEM. Statistical signifi cance was 
examined with a t test. P < 0.05 was determined to be signifi cant. Actual 
P values are listed in each fi gure.

Online supplemental material
Fig. S1 shows mitochondrial calcium levels early and late after FasL stimu-
lation, and the effect of B-IP3RCYT. Fig. S2 shows the effect of z-DEVD-fmk 
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on FasL-induced calcium signals. Fig. S3 shows the effects of BAPTA and 
thapsigargin on cytochrome c release and cell death. Video 1 depicts mito-
chondrial calcium dynamics in response to FasL. There is also a referenced 
Supplemental materials and methods. Online supplemental material is avail-
able at http://www.jcb.org/cgi/content/full/jcb.200608035/DC1.
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