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Introduction
Alzheimer’s disease (AD) affects �4.5 million Americans, and 

this number will continue to grow. By 2050, the number of indi-

viduals with AD could range from 11.3 to 16 million (Hebert 

et al., 2003). The pathogenesis underlying AD remains unclear, 

and it is controversial whether AD results from a primary abnor-

mality in amyloid precursor protein (APP) or deregulation of 

the infl ammatory system (Weiner and Selkoe, 2002), although 

these two possibilities are not mutually exclusive. Several lines 

of evidence implicate abnormal processing of APP, which is 

cleaved by two enzymes, β-secretase 1 (BACE1) and γ-secretase, 

to generate excessive amyloid β protein (Aβ), as a potential 

cause of AD (Selkoe, 2003; Tanzi and Bertram, 2005). In the past 

decade, transgenic mice have been generated that overexpress 

mutant APP and display Aβ-related lesions (Hsiao et al., 1995). 

Many of these mouse models exhibit amyloid plaque-predominant 

aspects of AD (Terry et al., 1987; Tiraboschi et al., 2004), including 

Aβ plaque formation, cerebral amyloid angiopathy (CAA), and 

infl ammation, but not τ pathology.

The TNF death receptor belongs to the TNFR superfamily, 

which includes >20 cell surface receptors. When the TNF type 1 

death receptor (TNFR1) binds to its ligand, TNFα, the ligand–

receptor complex triggers apoptotic pathways by recruiting a 

TNFR-associated death domain protein and/or a Fas-associated 

death domain protein/mediator of receptor-induced toxicity, two 

intracellular adaptor proteins (Boldin et al., 1995). The receptor-

induced multimerization of a Fas-associated death domain 

protein leads to caspase activation, which causes degradation 

of specifi c target proteins, ultimately damaging cell integrity 

(Ashkenazi and Dixit, 1998).

To fi nd out whether TNFR1 could have effect on Aβ pro-

duction as well as APP processing, we specifi cally chose trans-

genic APP23 mice in our experiments, which express a mutant 

APP that results in extensive Aβ plaque formation. Here we 

show that fewer Aβ plaques and Aβ-related lesions develop in 

Alzheimer’s transgenic mice with genetic deletion of TNFR1. 
Detailed analyses showed decreased Aβ generation, less neuro-

nal loss, and alleviated Aβ-related memory defi cits. Our data 

indicates that TNFR1 might be a potential and novel therapeutic 

target for AD.
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T
he tumor necrosis factor type 1 death receptor 

(TNFR1) contributes to apoptosis. TNFR1, a sub-

group of the TNFR superfamily, contains a cyto-

plasmic death domain. We recently demonstrated that the 

TNFR1 cascade is required for amyloid β protein (Aβ)–

 induced neuronal death. However, the function of TNFR1 

in Aβ plaque pathology and amyloid precursor protein 

(APP) processing in Alzheimer’s disease (AD) remains 

unclear. We report that the deletion of the TNFR1 gene 

in APP23 transgenic mice (APP23/TNFR1−/−) inhibits 

Aβ generation and diminishes Aβ plaque formation in 

the brain. Genetic deletion of TNFR1 leads to reduced 

β-secretase 1 (BACE1) levels and activity. TNFR1 regulates 

BACE1 promoter activity via the nuclear factor-κB path-

way, and the deletion of TNFR1 in APP23 transgenic mice 

prevents learning and memory defi cits. These fi ndings 

suggest that TNFR1 not only contributes to neurodegener-

ation but also that it is involved in APP processing and Aβ 

plaque formation. Thus, TNFR1 is a novel therapeutic 

 target for AD.
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Results
TNFR1 deletion reduces 
A𝛃-related pathology
APP23 transgenic mice (Sommer and Staufenbiel, 1998), a mouse 

model for AD with a plaque-predominant type (Terry et al., 

1987; Tiraboschi et al., 2004), overproduce Aβ, Aβ40, and 

Aβ42, and develop signifi cant amyloid deposits by the age of 

14 mo. To determine whether genetic inactivation of TNFR1 

delays or diminishes Aβ plaque formation, we crossed APP23 

mice with mice lacking the TNFR1 gene (TNFR1−/−; Peschon 

et al., 1998) to generate APP23/TNFR1−/− mice. To evaluate Aβ 

pathology in the brains, we fi rst used Congo red staining to see 

if reduced protein aggregation could be observed in the brains 

of APP23/TNFR1−/− mice. Congo red has been shown to be 

affi nitive for binding to fi bril proteins enriched in β-sheet con-

formation, and it is commonly used as a histological dye for 

amyloid detection (Frid et al., 2006). Results showed much less 

Congo red staining in APP23/TNFR1−/− mice (Fig. 1 A), in-

dicating that protein aggregation was alleviated in APP23/

TNFR1−/− mice.

To further confi rm that the aggregated protein we found 

was aggregated Aβ peptide, we next examined the brain section 

with anti-Aβ antibody 6E10 (Vassar et al., 1999; Van Dooren 

et al. 2006). At 12 mo of age, APP23 mice displayed numerous 

Aβ plaques throughout the entorhinal cortex and hippocampus, 

consistent with a previous paper (Sommer and Staufenbiel, 1998). 

In APP23/TNFR1−/− mice, however, we found only minor Aβ 

plaques in the entorhinal cortex (Fig. 1, B and C) and the hippo-

campus (Fig. 1, D and E). At 24 mo of age, APP23/TNFR1−/− 

mice also displayed reduced plaques (Fig. 1, B and D). The 

number of plaques was reduced by 73 and 80% in the entorhinal 

cortex (Fig. 1 C) and hippocampus (Fig. 1 E) in APP23/TNFR1−/− 

mice at 12 mo of age, indicating that Aβ pathology in APP23/

TNFR1−/− indeed alleviated plaque formation compared with 

age-matched APP23 mice.

The size of Aβ plaques also indicates the severity of Aβ 

pathology (Zhou et al., 2005). We used morphometric analyses 

on the brain sections immunostained with Aβ antibody 6E10. 

Results showed that both large (>20 μm diameter)- and me-

dium (10–20 μm diameter)-sized Aβ plaques in the entorhinal 

cortex (Fig. 1 F) and hippocampus (Fig. 1 G) were signifi cantly 

reduced in APP23/TNFR1−/− mice at 12 and 24 mo of age, indi-

cating that in APP23/TNFR1−/− mice, Aβ pathology was allevi-

ated not only by reducing the overall Aβ plaque number, but 

also by decreasing plaque size.

TNFR1 deletion reduces CAA
CAA has been reported to have both positive and negative cor-

relations with AD pathology (Cohen et al., 1997; Thal et al., 2003; 

Tian et al., 2003). It has been shown that CAA in APP23 trans-

genic mice is strikingly similar to that of human CAA (Calhoun 

et al., 1999). To fi nd out whether genetic deletion of TNFR1 

can relieve CAA in APP23 mice, the deposition of Aβ in the 

vascular wall was examined by double immunostaining with 

antibodies against β-smooth muscle actin (a vascular smooth 

muscle marker; Skalli et al., 1986) or von Willebrand factor 

(vWF; an endothelial cell marker; Shyu et al., 2006) and 

anti-Aβ40 antibody. We found that at 24 mo of age, APP23 

mice display CAA predominant in cortical, hippocampal, and 

thalamic vessels; Aβ40 formed a continuous ring-like shape 

within the vessel wall (Fig. 2, A and B), consistent with Calhoun 

et al. (1999). However, there were very few Aβ40 deposits within 

the vessels of APP23/TNFR1−/− (Fig. 2, C and D). Deposition 

of Aβ on the vascular wall could not only increase the vulnera-

bility of cerebral vessels but also increase the possibility of intra-

cerebral hemorrhage (Vinters, 1987; Itoh et al., 1993; Winkler 

et al., 2001; Atwood et al., 2003). Our results showed little CAA 

progression in the brains of APP23/TNFR1−/− mice, suggesting 

that deletion of TNFR1 could reduce the risk of CAA.

TNFR1 deletion reduces 
microglia activation
Microglia activation is also a hallmark of Aβ pathology pro-

gression (Yan et al., 2003 ;Wilcock et al., 2004; Simard et al., 

2006). CD11b and CD45 are two well-characterized markers 

for microglia activation in the brains (Yan et al., 2003; Wilcock 

et al., 2004; Simard et al., 2006).To examine whether deletion 

of TNFR1 could alleviate the massive microglia activation of 

APP23 mice, we studied the microglia activation in APP23 

and APP23/TNFR1−/− mice. Consistent with a previous paper 

(Wilcock et al., 2003), APP23 mice showed strong immuno-

reactivity with antibodies against CD11b (Mac-1) and CD45 in 

the entorhinal cortex (Fig. 3 A) and hippocampus (Fig. 3 B), in-

dicating that a massive amount of microglia had been activated 

along with the appearance of Aβ pathology. In contrast, APP23/

TNFR1−/− mice showed signifi cantly less CD11b and CD45 

immunoreactivity in the entorhinal cortex (Fig. 3 A) and hippo-

campus (Fig. 3 B), indicating that genetic deletion of TNFR1 

alleviated massive microglia activation in APP23 mice.

TNFR1 deletion reduces A𝛃 production
Because we found reduced Aβ pathology in APP23/TNFR1−/− 

mice, our next question was whether genetic inactivation of 

TNFR1 reduces Aβ pathology by affecting Aβ generation. The 

Aβ level was analyzed by immunoprecipitation followed by 

Western blotting (n = 3 for each group). Fig. 4 A shows a repre-

sentative urea Western blot (Wiltfang et al., 1997) comparing the 

4-kD Aβ species (n = 3 for each group). Both Aβ40 and Aβ42 

can be detected, and Aβ42 migrated ahead of Aβ40, consistent 

with a previous paper (Wiltfang et al., 1997). Compared with 

APP23 mice, APP23/TNFR1−/− mice showed a signifi cant re-

duction in both Aβ40 and Aβ42 levels (Fig. 4 A). We further 

measured total Aβ, Aβ40, and Aβ42 levels by sandwich ELISAs 

(n = 10 for each group). The results bolstered our Western blot 

fi ndings and confi rmed that APP23/TNFR1−/− mice have much 

less total Aβ, Aβ40, and Aβ42 (Fig. 4, B–D). Quantitatively, 

total Aβ decreased by 69% (37.39 ± 12.71 ng/mg) and 30% 

(463.87 ± 189.83 ng/mg) in 12- and 24-mo-old APP23/

TNFR1−/− mice, respectively, compared with total Aβ in APP23 

mice (12 mo old:  120.80 ± 39.74 ng/mg; 24 mo old: 693.40 ± 

270.27 ng/mg; Fig. 4 B). Both Aβ40 and Aβ42 were reduced 

in APP23/TNFR1−/− mice. However, the most signifi cant dif-

ference is at 12 mo of age, when Aβ40 decreased by 80% in 
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Figure 1. A𝛃 deposition is signifi cantly reduced in APP23/TNFR1−/− mice. (A) Congo red showed fewer congophilic deposits in the brains of APP23/
TNFR1−/− mice at both 12 and 24 mo of age. (B) 6E10-immunostained sections of the entorhinal cortex. (C) Stereological analyses of 6E10-immunostained 
sections revealed fewer immunoreactive plaques in the entorhinal cortex of APP23/TNFR1−/− mice. (D) 6E10-immunostained sections of the hippocampus. 
(E) Stereological analyses of 6E10-immunostained sections revealed fewer immunoreactive plaques in the hippocampus of APP23/TNFR1−/− mice (*, P < 0.05). 
(F) Fewer large plaques (>20 μm) were found in the entorhinal cortex of APP23/TNFR1−/− mice. (G) Fewer large plaques (>20 μm) were found in the 
hippocampus of APP23/TNFR1−/− mice. Error bars represent SD. Bars, 50 μm.
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APP23/TNFR1−/− mice (20.45 ± 4.7 ng/mg) compared with 

APP23 mice (103.87 ± 21.81 ng/mg; Fig. 4 C), and Aβ42-

decreased by 70% in APP23/TNFR1−/− mice (4.12 ± 1.2 ng/mg) 

compared to APP23 mice (15.78 ± 4.7 ng/mg; Fig. 4 D). These re-

sults indicated that reduction in Aβ40 and Aβ42 levels could ac-

count for the alleviated Aβ pathology in APP23/TNFR1−/− mice.

One of the mechanisms that could infl uence Aβ production 

is through altering APP holoprotein levels. We next analyzed by 

Western blot to see if deletion of TNFR1 affects APP protein 

levels (n = 3 for each group). In contrast to the reduction in Aβ 

levels, Western blotting did not reveal any differences in full-length 

APP levels between APP23/TNFR1−/− and APP23 mice (Fig. 4 E), 

indicating that the decrease in Aβ levels was not caused by altering 

APP protein expression in APP23/TNFR1−/− mice.

TNFR1 deletion alters BACE1 
activity and level
To examine whether the reduced amyloidosis in APP23/

TNFR1−/− mice was caused by a reduction in abnormal APP 

metabolism, we examined the activity and expression levels of 

one key enzyme in APP processing, BACE1.

We fi rst used an MCA-labeled BACE1 substrate (Yang 

et al., 2003; Li et al., 2004a) to examine BACE1 activity and 

found that BACE1 activity was significantly decreased in 

APP23/TNFR1−/− mice (Fig. 5 A). To fi nd out whether the de-

creased BACE1 activity was due to a decrease in BACE1 levels, 

we measured BACE1 levels by sandwich ELISA (Yang et al., 

2003) and Western blot (n = 3 for each group). We found that 

BACE1 levels in APP23/TNFR1−/− mice were indeed reduced 

in both Western blot and ELISA results (Fig. 5, B and C), indi-

cating that reduced BACE1 activity in APP23/TNFR1−/− mice was 

caused by a reduction in the protein level. To further investigate 

whether reduced BACE1 protein level is caused by reduced 

BACE1 mRNA transcription, we performed RT-PCR to mea-

sure BACE1 mRNA levels and found that BACE1 mRNA was 

also decreased in APP23/TNFR1−/− mice (Fig. 5 D), indicating 

that the genetic deletion of TNFR1 reduced BACE1 mRNA lev-

els and caused BACE1 activity to be down-regulated in APP23/

TNFR1−/− mice.

TNF𝛂 regulates BACE1 transcription 
through the TNFR1–nuclear factor 𝛋B 
(NF-𝛋B) pathway
Our RT-PCR results showed that BACE1 mRNA levels de-

creased in APP23/TNFR1−/− mice; the next question was what 

signal transduction pathway leads to the decreased BACE1 

mRNA level.

To clarify how deletion of TNFR1 affects BACE1, we 

transfected 293 cells with a pB1P-A vector containing a BACE1 

promoter (−1941 to +292) that was upstream of a luciferase 

reporter gene (Christensen et al., 2004; Sambamurti et al., 

2004), and then treated these cells with different concentrations 

of TNFα. We found that BACE1 promoter activity increased in 

a concentration-dependent manner (Fig. 6 A). Blocking the 

interaction of TNFα with the extracellular domain fragment of 

TNFR1 inhibited such elevation in BACE1 promoter activity 

(Fig. 6 A), indicating that TNFα activates BACE1 promoter 

through TNFR1.

Figure 2. Cerebral vascular amyloid deposits were reduced in APP23/TNFR1−/− mice. (A) 6E10 immunostaining showed that microvascular Aβ deposits 
were reduced in the frontal cortex of APP23/TNFR1−/− mice. (B) Vascular Aβ deposits were reduced in the thalamus of APP23/TNFR1−/− mice. (C) Double 
labeling of α-smooth muscle actin (α-SM actin; red) and Aβ40 (green) showed fewer Aβ40 deposits on microvascular walls of 24-mo-old APP23/TNFR1−/− 
mice than in age-matched APP23 mice (arrow points to absence of Aβ deposits on one smaller vascular wall). (D) Double labeling of 6E10 and vWF anti-
body showed fewer Aβ deposits on the vascular walls of 24-mo-old APP23/TNFR1−/− mice (arrow points to an Aβ plaque that appears to be outside of 
the vascular wall in the cortex of APP23/TNFR1−/− mice). Bars: (A and B) 50 μm; (C and D) 5 μm. 
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NF-κB is one of the major mediators of TNFα-activated 

TNFR1 signaling (Hsu et al., 1995; Yang et al., 2002). A recent 

fi nding that multiple NF-κB binding sites are located in the 

vicinity of BACE1 promoter (Sambamurti et al., 2004) suggests 

that NF-κB may play an important role in regulating BACE1 

transcription. To determine whether TNFR1 activates the BACE1 

promoter through this pathway, we used the potent NF-κB acti-

vation inhibitor 6-amino-4(4-phenoxyphenylethylamino) quin-

azoline (Tobe et al., 2003) to block NF-κB signaling in TNFα-

treated 293 cells transfected with a BACE1 promoter luciferase 

reporter vector. Treating a pB1P-A transfected cell with an 

NF-κB inhibitor signifi cantly reduced TNFα-induced BACE1 

promoter activity (Fig. 6 B). A high concentration of NF-κB in-

hibitor inhibited not only TNFα-induced BACE1 promoter ac-

tivity but also basal promoter activity (Fig. 6 B), indicating that 

NF-κB may play a central role in regulating BACE1 transcription. 

Thus, the TNFα-mediated activation of NF-κB through TNFR1 

represents a key part of this regulatory pathway.

These fi ndings indicate that one mechanism underlying the 

regulation of BACE1 transcription may be through TNFR1-

mediated activation of NF-κB. We found signifi cantly lower Aβ 

as well as BACE1 levels in APP23/TNFR1−/− in older specimens 

(12 and 24 mo). One possible explanation is that when Aβ deposits 

are lower (at both time points), there is less Aβ to extract, there-

fore lower Aβ levels might not be caused by the reduced BACE1 

level. To examine whether the reduced Aβ level is caused by the 

reduced BACE1 level, we measured Aβ and BACE1 levels in 

APP23/TNFR1−/− mice at 6 mo of age, before Aβ pathology can 

be observed. If TNFR1 affects the BACE1 level, it should also 

reduce the BACE1 level at this age. We fi rst found that total Aβ 

in APP23/TNFR1−/− mice was much lower than in APP23 mice 

(Fig. 7 A). Both Aβ40 and Aβ42 levels in APP23/TNFR1−/− 

mice were also reduced. A Western blot showed a reduction of 

the BACE1 protein level in APP23/TNFR1−/− mice (Fig. 7 B). 

BACE1 RT-PCR showed a similar result to that of 12-mo-old 

mice; the BACE1 mRNA level was signifi cantly lower in APP23/

TNFR1−/− mice than in APP23 mice (Fig. 7 C). Together, these 

fi ndings indicate that TNFR1 indeed regulates the BACE1 mRNA 

level, and that Aβ reduction in APP23 mice after genetic deletion 

of TNFR1 is caused by decreased BACE1 levels.

TNFR1 deletion has little effect on A𝛃 
clearance enzymes insulin degradation 
enzyme (IDE) and neprilysin (NEP)
Aβ reduction could also be caused by an increase in Aβ 

degradation/clearance activity, which is not relevant to Aβ 

production. To determine whether deletion of TNFR1 reduces 

Aβ deposition by affecting enzymes involved in Aβ degrada-

tion, we assessed the protein levels of IDE and NEP, two enzymes 

that play an important role in Aβ degradation and clearance 

(Farris et al., 2003). Western blot analyses did not show signifi -

cant differences in either IDE or NEP levels between APP23/

TNFR1−/− and APP23 mice (Fig. 8 A), suggesting that deletion 

of TNFR1 did not interfere with IDE and NEP expression. To fi nd 

out whether deletion of TNFR1 could have an effect on IDE or NEP 

activity, we further compared both IDE and NEP activity between 

APP23 and APP23/TNFR1−/− mice. Again, no signifi cant dif-

ference was observed (Fig. 8, B and C). Therefore, IDE and NEP 

were not responsible for the reduction of the Aβ level associated 

with the TNFR1 deletion.

TNFR1 deletion ameliorates neuron loss
We recently reported that TNFR1 plays a critical role in Aβ-

induced neuronal death (Li et al., 2004b). To determine whether 

the deletion of TNFR1 protects neurons, we compared neuronal 

loss in wild-type, APP23/TNFR1−/−, and APP23 mice. Com-

pared with wild-type mice, APP23 mice show a 30% reduction 

in NeuN-positive cells in the entorhinal cortex, whereas APP23/

TNFR1−/− mice show no signifi cant reduction at 24 mo of age 

(Fig. 9, A and C). Results were similar in the hippocampus, 

where APP23 mice had 15% fewer NeuN-positive cells in the 

CA1 area of the hippocampus (Fig. 9 B, D; Calhoun et al., 

1998), whereas little neuronal loss was seen in APP23/TNFR1−/−

mice at 24 mo of age (Fig. 9, B and D). We found similar results 

using Nissl-stained brain sections (not depicted).

TNFR1 deletion lessens memory defi cits 
typical of APP23 mice
To examine the behavioral signifi cance of TNFR1 deletion, we 

tested wild-type, APP23, APP23/TNFR1−/−, and TNFR1−/− 

Figure 3. Microglia activation is reduced in the brains of APP23/TNFR1−/−

mice. (A) The sections were immunostained with CD11b, an activated 
microglia marker, in the entorhinal cortex. (B) The sections were immuno-
stained with CD11b in the hippocampus. Bars, 50 μm. 
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mice with a hole-board memory test, which is a behavioral 

task widely used to assess exploratory learning and memory 

(Garcia, 1987; Thifault et al., 2002). The majority of APP23 mice 

showed signifi cant defi cits in the spatial component of the test. 

However, exploratory learning and memory retention (percent-

age of correct pokes) of APP23/TNFR1−/− mice was not sig-

nifi cantly different from that of wild-type or TNFR1−/− mice 

(Fig. 10 A). This suggests that deletion of TNFR1, which could 

lead to a reduction of Aβ levels as well as neuronal protection, 

might have an effect on improving spatial learning perfor-

mance in APP23/TNFR1−/− mice (Fig. 10 A). The correlation be-

tween Aβ reduction/neuronal protection and improved learning 

and memory behaviors remained strong when the percentages 

of correct pokes were averaged over all hidden hole-board 

trials (Fig. 10 A). Specifi cally, we found that 6-mo-old APP23 

mice made more errors than did age-matched wild-type mice 

across 3 d of testing (group effect, F1,15 = 22.198, P < 0.001). 

However, percentage correct scores of APP23/TNFR1−/− mice 

were markedly higher than those of APP23 mice. APP23/

TNFR1−/− mice made signifi cantly fewer errors than did APP23 

mice on days 2 and 3 of testing (group effect, F1,20 = 8.957, 

P < 0.05).

The object recognition task is based on the spontaneous 

exploration of novel and familiar objects. Mice will spend more 

time exploring a novel object than a familiar one (Pittenger 

et al., 2002; Bourtchouladze et al., 2003; Wang et al., 2004). We 

further examined whether deletion of TNFR1 could rescue ob-

ject recognition defi cits in APP23 mice. Object recognition per-

formance was much better in APP23/TNFR1−/− mice than in 

APP23 mice, as the recognition indexes differed signifi cantly 

between these groups (group effect, F3,31 = 24.947, P < 0.001; 

Fig. 10 B). APP23/TNFR1−/− mice performed comparably to 

Figure 4. Deletion of TNFR1 reduces A𝛃 
production. (A) Western blot showed reduced 
Aβ40 and Aβ42 in APP23/TNFR1−/− mice at 
both 12 and 24 mo of age. (B) Total Aβ ELISA 
was calculated as nanogram per milligram of 
protein. (C) Aβ40 ELISA was calculated as 
nanogram per milligram of protein. (D) Aβ42 
ELISA was calculated as picogram per milli-
gram of protein (*, P < 0.05). (E) Western 
blot of brain lysates (50 μg protein) showed 
the APP expression. No change in APP expres-
sion was observed. Error bars represent SD. 
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age-matched wild-type mice. In addition, within-group t-test 

analyses confi rmed that APP23/TNFR1−/− mice (t = 8.872, 

P < 0.001) and wild-type mice (t = 10.024, P < 0.001) per-

formed above chance values  (50%), whereas APP23 mice did 

not (t = 0.092). This result suggests that deletion of TNFR1 in 

APP23 mice not only improves learning and memory in the 

hole-board behavioral test but also enhances performance in 

objective recognition.

Discussion
TNFR is a family of TNF receptors, TNFR1 and TNFR2 (Tartaglia 

et al., 1993), both of which bind soluble Aβ40 (Li et al., 2004b). 

Overexpression of TNFR1 promotes Aβ-induced neuronal death 

(Li et al., 2004b). It has been reported that a higher infl amma-

tory response was observed in MCI and AD patients (Cagnin 

et al., 2001; Tarkowski et al., 2003 ;Galimberti et al., 2006), 

Figure 5. Deletion of TNFR1 reduced BACE1 
protein levels and activity. (A) BACE1 activ-
ity assay showed reduced BACE1 activity in 
APP23/TNFR1−/− mice at 12 and 24 mo, 
compared with APP23 mice. The activity was 
normalized to the input protein amount and 
indicated as an arbitrary unit (*, P < 0.05). 
(B) Western blot of BACE1 in wild-type, 
APP23/TNFR1−/−, and APP23 mice. BACE1 
expression levels were reduced in APP23/
TNFR1−/− mice. (C) BACE1 ELISA showed 
that the BACE1 level was reduced in APP23/
TNFR1−/− mice compared with APP23 and 
wild-type mice. BACE1 concentrations were 
calculated using a BACE1 standard curve. 
Concentrations are expressed as microgram 
per milligram of total protein (*, P < 0.05). 
(D) RT-PCR of BACE1 from the brains of APP23 
and APP23/TNFR1−/− mice, mouse ribosomal 
subunit protein s18 was used as a loading 
control. BACE1 mRNA was decreased in 
APP23/TNFR1−/− mice. Error bars represent SD. 
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and infl ammatory cytokines and free radicals can up-regulate 

BACE1 expression (Tamagno et al., 2002; Hong et al., 2003; Pak 

et al., 2005; Tamagno et al., 2005; Sastre et al., 2006). TNFα is 

one of the up-regulated infl ammation factors in APP transgenic 

mice (Patel et al., 2005). Here we found that TNFR1 could di-

rectly regulate BACE1 transcription through NF-κB, which is 

one of the major mediators of TNFα-activated TNFR1 signaling 

(Hsu et al., 1995; Yang et al., 2002). Recent fi ndings showed 

multiple NF-κB binding sites located in the vicinity of BACE1 

promoter (Sambamurti et al., 2004), suggesting that NF-κB may 

play an important role in regulating BACE1 transcription. This 

is confi rmed by our results that the NF-κB inhibitor inhibits 

BACE1 promoter activity.

At 24 mo of age, we found signifi cant neuronal loss in 

APP23 mice. However, Irizarry et al. (1997) did not observe 

neuronal loss in 16-mo-old APP transgenic mice (Tg2576) ex-

pressing the APPK670N/M671L mutation, the same mutation 

harbored by APP23 mice. This might be because the APP trans-

gene is controlled by different promoters in APP23 and Tg2576 

mice (Irizarry et al., 1997; Sturchler-Pierrat et al., 1997). TNFR1 

defi ciency ameliorates neuron loss in APP23 mice, consistent 

with our previous fi ndings that TNFR1 overexpression increases 

the vulnerability of cultured hippocampal neurons to Aβ-induced 

death and promotes neuronal degeneration (Li et al., 2004b). 

We also noticed that TNFα plays different roles in neuronal death 

and survival via its distinct receptors, TNFR1 and TNFR2. Neuron 

loss in APP23 mice caused by “endogenous” Aβ may be con-

ducted through different signal transduction pathways. Moreover, 

Barger et al. (1995) showed that TNFα can protect neurons 

derived from fetal brains against Aβ toxicity. Our unpublished 

data show that TNFR1 is expressed at a low level, whereas TNFR2 

is expressed at a high level in fetal neurons. This may explain why 

TNFα is trophic in fetal neurons. Interestingly, Bruce et al. 

(1996) discovered that neurons from mice with a defi ciency 

of both TNFR1 and TNFR2 are more sensitive to excitotoxic 

 injury. This result is interesting because the fi nding suggests 

that there is a balance between TNFR1 and TNFR2 expression 

levels in neurons, and TNFR2 seems to be more critical and more 

sensitive to neurons.

Our behavioral analyses revealed that inactivation of 

TNFR1 rescued hippocampal-dependent learning and memory 

defi cits displayed by young APP23 mice (Van Dam et al., 2003). 

A previous study reported that disruption of the BACE1 gene or 

PS1 in APP transgenic mice rescues memory defi cits measured 

by social recognition and spatial alternation tasks (Saura et al., 

2005). This is consistent with our fi ndings in APP23/TNFR1−/− 

mice, presumably because TNFR1 depletion decreases Aβ pro-

duction and deposition, thereby reducing Aβ-related memory 

defi cits. The relatively normal performance of hippocampal-

 dependent memory tasks by APP23/TNFR1−/− mice is age 

related. At 6 mo of age, APP23/TNFR1−/− mice already performed 

hippocampal-dependent memory tasks better than APP23 mice. 

Furthermore, TNFR1 knockout mice exhibited normal synaptic 

transmission and plasticity in the Schaffer collateral pathway 

(unpublished data). Our results allow us to determine whether 

treating APP23 mice with anti-TNFR1 antibody or inhibitors of 

the TNFR1 signal transduction pathway could reduce BACE1 

and cerebral Aβ.

Materials and methods
Generation of APP transgenic AD mice with deletion of TNFR1
TNFR1 knockout mice (TNFR1−/−) were constructed on a C57BL/6 back-
ground as previously described (Peschon et al., 1998). APP23 transgenic 
mice were provided by Novartis Institute for Biomedical Research; these 

Figure 6. TNFR1 regulates BACE1 promoter activity through NF-𝛋B. (A) TNFα induces BACE1 promoter activity. (B) NF-κB inhibits TNFα-induced BACE1 
promoter activity. Error bars represent SD.
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mice express mutant human βAPP (Swedish double mutation, KM670/
671NL) under the control of a brain- and neuron-specifi c murine Thy-1 
promoter element. APP23 transgenic mice develop senile plaques in the 
cerebral cortex and hippocampus and show neuronal loss at 12–18 mo of 
age; this pathology is most evident in area CA1 of the hippocampus 
(Sommer and Staufenbiel, 1998). APP23 mice were also constructed on a 
C57BL/6 background.

APP23 and TNFR1−/− mice were crossed and their progeny were 
genotyped. An APP23/TNFR1+/− mouse was backcrossed with TNFR1−/− 
mice to produce APP23/TNFR1−/− mice. To maintain the heterozygous 
APP transgene in our mice, we crossed APP23 mice with wild-type C57BL/6 
mice. For APP23/TNFR1−/− mice, we crossed APP23/TNFR1−/− with 
TNFR1−/− mice for three to fi ve generations. Therefore, both APP23 and 
APP23/TNFR1−/− mice were APP23+/−. We used APP23/TNFR1−/− mice 
of the F3–F5 generation in our experiments.

Mice homozygous for the TNFR1 targeted mutation (formerly TNFR1, 
p55 defi cient) show defects in resistance to intracellular pathogens and are 
resistant to the lethal effects of lipopolysaccharide administration in 
conjunction with D-galactosamine. Pulmonary infl ammatory responses are 
diminished in p55-defi cient mice. There are also defects in splenic architec-
ture, formation of germinal centers, and liver regeneration. TNFR1- defi cient 
mice display increased susceptibility to atherosclerosis when maintained 
on a high-fat diet (Peschon et al., 1998). No observations regarding any 
syndromes of the central nervous system have been made.

ELISA
APP23, APP23/TNFR1−/−, and wild-type mice (n = 10 per group) were 
killed at 12 and 24 mo of age, and one hemisphere of the brain was ho-
mogenized in homogenization buffer (250 mM sucrose, 20 mM Tris-HCl, 
pH 7.4, 1 mM EDTA, and 1 mM EGTA). An aliquot of the homogenate 
was dissolved in formic acid and neutralized with a neutralization buffer 

(1 mM Tris and 0.5 M Na2HPO4). Protein concentration was measured by 
protein assay (Bio-Rad Laboratories). For total Aβ ELISA, the capture anti-
body was monoclonal anti-Aβ antibody 4G8 (Chemicon), and the detec-
tion antibody was biotinylated monoclonal antibody anti-Aβ 6E10 (AbD 
Serotec). Aβ40 and Aβ42 were measured with an Aβ40 and Aβ42 ELISA 
kit (Biosource International). The ELISA system has been extensively tested 
and no cross-reactivity between Aβ40 and Aβ42 was observed. Data are 
presented as means ± SD of four experiments.

BACE1 protein levels were measured by ELISA as described previ-
ously (Yang et al., 2003). The capture antibody was anti-BACE1 poly-
clonal antibody P1 (Yang et al., 2003) and the detection antibody was 
biotinylated anti-BACE1 polyclonal antibody P2 (Yang et al., 2003). 
TMB substrate was used to visualize the reaction product, which was 

Figure 7. A𝛃 and BACE1 levels are reduced in APP23/TNFR1−/− mice as 
early as 6 mo of age. (A) Aβ40 and Aβ42 levels of APP23 and APP23/
TNFR1−/− mice at 6 mo of age. (B) Western blots showed that BACE1 in 
APP23/TNFR1−/− mice is much lower than that in PP23 mice at 6 mo of 
age. (C) RT-PCR showed that BACE1 mRNA in APP23/TNFR1−/− mice is 
signifi cantly lower compared with APP23 mice at 6 mo of age. Error bars 
represent SD.

Figure 8. Deletion of TNFR1 has no effect on IDE or NEP. (A) Western blots 
showing the density of IDE and NEP in brain lysates of wild-type, APP23/
TNFR1−/−,and APP23 mice at 12 and 24 mo of age. (B) No signifi cant 
changes were observed in IDE activity between APP23 and APP23/
TNFR1−/− mice. (C) No signifi cant differences in NEP activity between 
APP23 and APP23/TNFR1−/− mice were found. Error bars represent SD. 
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read at OD450 with a microplate reader (Sigma-Aldrich). BACE1 protein 
(Amgen) was used as a standard. Data are presented as means ± SD of 
four experiments.

Western blot
Aliquots of brain homogenates from APP23, APP23/TNFR1−/−, and wild-
type mice were further lysed with 1× RIPA buffer, and 50–150 μg of total 
protein was subjected to SDS-PAGE (8–12% acrylamide). Separated pro-
teins were then transferred onto polyvinylidene fl uoride membranes. The 
blots were probed with the following antibodies: anti-BACE1 monoclonal 
antibody (R&D Systems), anti-Aβ (1–17) monoclonal antibody (clone 
6E10, 1:2,000; Chemicon), anti-IDE polyclonal antibody (Oncogene 
Research Products), anti-NEP polyclonal antibody (Chemicon), and anti–
β actin antibody (Sigma-Aldrich).

Western blotting for Aβ was performed as described previously 
(Wiltfang et al., 1997). To detect minute levels of Aβ, formic acid–
 dissolved brain tissue was immunoprecipitated with anti-Aβ polyclonal 
antibody (Zymed Laboratories) and subjected to SDS-PAGE using 10% 
acrylamide gels containing 8 M urea. Separated proteins were transferred 
onto polyvinylidene fl uoride membranes. Aβ40 and Aβ42 were detected 
with monoclonal anti-Aβ antibody 6E10. Synthetic Aβ40 and Aβ42 (Bio-
source International) were used as standards.

BACE1, IDE, and NEP activity
An aliquot of brain homogenates from APP23, APP23/TNFR1−/−, and 
wild-type mice was further lysed with a lysis buffer (10 mM Tris-HCl, 
pH 7.4, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1 mM Na3VO4, 10% glyc-
erol, and 0.5% Triton X-100). BACE1 enzymatic activity assays were per-
formed by using synthetic peptide substrates containing BACE1 cleavage 
site (MCA-Glu-Val-Lys-Met-Asp-Ala-Glu-Phe-[Lys-DNP]-OH; Biosource Inter-
national). BACE substrate was dissolved in DMSO and mixed with a 
50-mM Hac and 100-mM NaCl, pH 4.1, reaction buffer. An equal amount 
of protein was mixed with 100 μl of substrate, and fl uorescence intensity 
was measured with a microplate reader (BioTek) at an excitation wave-
length of 320 nm and an emission wavelength of 390 nm.

IDE enzyme activity was measured as described previously (Song 
et al., 2003). In brief, brains were homogenized in 50 mM potassium phos-
phate buffer, pH 7.3, containing 200 μm PMSF and a proteinase inhibitor 
mix (Sigma-Aldrich). Samples were centrifuged and the supernatant fraction 
was used for IDE activity measurement. The hydrolysis of fl uorogenic 
substrate peptides (2 μm Abz-G G F L R K H G Q E D -Dnp as substrate in 20 mM 
potassium phosphate buffer, pH 7.3) was measured by following an 

 increase in fl uorescence (excitation at 318 nm and emission at 419 nm) 
that occurred upon peptide bond cleavage. The max velocity of IDE activity 
was calculated by the fi rst 20 min and indicated as fl uorescence unit/min 
microgram protein.

For the in vitro NEP activity assay, mouse brains were homogenized 
in 100 mM MES buffer (pH 6.5) with proteinase inhibitors (Sigma-Aldrich). 
Homogenate was centrifuged at 20,000 g for 45 min to separate the 
membrane fraction and the supernatant was removed. The membrane pel-
let was resuspended in MES buffer and directly used in NEP activity assay 
as previously described (Li and Hersh, 1995).

RT-PCR
To compare BACE1 expression levels, we used the following primers for 
RT-PCR: mouse BACE1 forward primer, 5′-A G A C G C T A C A C A T C C T G G T G -3′, 
and backward primer, 5′-C C T G G G T G T A G G G C A C A T A C -3′. The amplifi ed 
BACE1 fragment was 146 bp. Mouse s18 was used as a loading control: 
forward primer, 5′-C A G A A G G A C G T G A A G G A T G G -3′, and backward primer, 
5′-C A G T G G T C T T G G T G T G C T G A -3′. The amplifi ed mouse s18 fragment 
was 159 bp. Total RNA was extracted from the brains of 12-mo-old APP23 
and APP23/TNFR1−/− mice (n = 5) using an RNA mini column kit (Invitrogen). 
RT-PCR was performed using a One- Step RT-PCR kit (Invitrogen) and the 
following PCR cycles: 50°C for 30 min, 94°C for 2 min, followed by 25 
cycles at 94°C for 15 s, 49°C for 30 s, and 68°C for 1 min.

Cell transfection and luciferase assay
We transfected 293 cells with pB1P-A vector containing a BACE1 promoter 
(−1941 to +292) upstream from a luciferase reporter gene (Christensen 
et al., 2004) using lipofectamine (Invitrogen). After transfection, cells were 
treated with different concentrations of TNFα (R&D Systems), extracellular 
domain of TNFR1 (R&D Systems), or NF-κB inhibitor 6-amino-4(4-phenoxy-
phenylethylamino) quinazoline (Calbiochem; Tobe et al., 2003). Cells 
were collected 12 h after treatment, and a luciferase assay (Promega) 
was performed, according to the manufacturer’s instructions. Lumines-
cence intensity was measured with a microplate reader, normalized ac-
cording to protein amount, and plotted as relative luminescence units per 
milligram of protein.

Immunohistochemistry and immunofl uorescence
Immunohistochemistry was performed as previously described (Matsuoka 
et al., 2001). In brief, paraformaldehyde-fi xed brains were quickly frozen, 
and then sectioned at 30 μm. Sections were incubated with either anti-Aβ 
(6E10 clone or 4G8 clone, 1:1,000; Chemicon), anti-NeuN (MAB377, 

Figure 9. Deletion of TNFR1 in APP23 mice reduces 
neuron loss. (A) Fewer NeuN-positive neurons were 
present in the entorhinal cortex of APP23 mice at the 
age of 24 mo. (B) NeuN immunostaining demonstrated 
little neuronal loss in the CA1 fi eld in APP23/TNFR1−/− 
mice. (C) Statistical analyses show that APP23 mice 
had signifi cantly fewer neurons in the entorhinal cortex 
at 24 mo of age (*, P < 0.01). (D) Statistical analyses 
show APP23 mice had signifi cantly fewer neurons in the 
CA1 of the hippocampus at 24 mo of age (*, P < 0.01). 
Error bars represent SD. Bars, 10 μm. 
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1:400; Chemicon), anti-CD11b (MCA711, 1:500; AbD Serotec) and 
CD45 (MCA1388, 1:500; AbD Serotec), anti-α-smooth muscle actin (α-SM 
actin, A2547, 1:400; Sigma-Aldrich), or anti-vWF (AB7536, 1:200; 
Chemicon). Secondary antibodies were applied with horse anti–mouse (for 
6E10, NeuN detection, 1:1,000) and goat anti–rat (for CD45 or CD11b, 
1:1,000) followed by a DAB substrate (Vector Laboratories). For immuno-
fl uorescence, fl uorescent-labeling 488 (green) or 594 (red) secondary anti-
bodies against rabbit IgG or mouse IgG were used (1:1,000; Invitrogen). 
A microscope (DMLS; Leica) with a 10× N PLAN and 20× and 40× PL 
FLUOTAR was used. Digital images were captured and processed by digital 
camera (Optronics) and MagnaFire software (version 2.1C; Optronics).

Quantitation of immunoreactive structures
30-μm serial sagittal sections through the entire rostrocaudal extent of the 
hippocampus were cut on a cryostat. Every 10th section was immuno-
stained with anti-NeuN antibody. On all sections containing the hippo-
campus, we delineated the pyramidal cell layer CA1. The total number of 
neurons were obtained using unbiased stereology (Casas et al., 2004; 
Schmitz et al., 2004) and a microscope equipped with a digital camera 
(DEI-470; Optronics). For each section, we delineated a 400-μm2 area in 
CA1 and in the entorhinal cortex and counted all NeuN-immunoreactive 
cells within that 400-μm2 box. The mean sum of neurons was counted per 
animal (n = 10). We used the same method to count Aβ-immunoreactive 
plaques (stained with 6E10) in the hippocampus and entorhinal cortex in 
a double blind test. We also measured the diameter of each counted 
plaque. Differences between groups were tested with Image-pro Plus Analysis 
(Media Cybernetics).

Hole-board memory task
As previously reported (Dodart et al., 2002), this task measured a mouse’s 
ability to remember which one out of four equidistant holes was baited with 
food. Two photobeam apparatuses were used with a hole board for assessing 
directed exploration in mice for behavioral tests. A tested mouse (n = 10 
for each group) was placed in the center of the hole-board and the number 
of nose pokes was automatically registered for 5 min. After 20 min, each 
animal was placed in a corner of the hole board and allowed to freely 
explore the apparatus for 5 min. The number of head dips, time spent 
head-dipping, and the number of rearings were recorded. A comprehensive 
cognitive performance was determined by calculating the mean number of 
correct pokes per trial that mouse made each day. Cognition was expressed 
as the percentage of correct pokes. The measurements in the hole-board 
test were analyzed by unpaired t test. In all cases the signifi cance level was 
considered to be P < 0.05, and the very signifi cant level was considered 
to be P < 0.01.

Object recognition task
The day before training, an individual mouse (n = 10 for each group) was 
placed into a training apparatus (a box the same size as described for the 
hole-board test) and allowed to habituate to the environment for 15 min. 
Training was initiated 24 h after habituation. A mouse was placed back 
into the training box containing two identical objects A and B (die or marble) 
and allowed to explore these objects. Among experiments, training times 
varied from 3.5 to 20 min. For each experiment, the same set of animals 
was used repeatedly with different sets of objects for each repetition. Five 
repetitions were performed on each set of mice. Each mouse was 
trained and tested no more than once per week, with a 1-wk interval be-
tween testing. Moreover, each experimental condition was replicated inde-
pendently four times. In each experiment, the experimenter was blinded to 
the subjects during training and testing. To test memory retention, mice 
were observed for 10 min, 6 h, and 24 h after training. Mice were pre-
sented with two objects, one that was used during training, and thus was 
‘‘familiar,’’ and one that was novel. The test objects were divided into 10 
sets of ‘‘training’’ plus ‘‘testing’’ objects, and a new set of objects was used for 
each training session. A recognition index was calculated for each mouse, 
expressed as the ratio (100TB)×(TA + TB), where TA and TB are the time 
spent during the second trial on subject A and subject B, respectively. 
To ensure that the discrimination targets did not differ in odor, the appara-
tus and the objects were thoroughly cleaned with 90% ethanol, dried, and 
ventilated for a few minutes after each experiment.

Statistical analyses
In general, analysis of variance models (ANOVA) were used to analyze 
behavioral data. Typically, the statistical models included two between-
subjects variables, the genotype of mice (APP23 vs. APP23/TNFR1−/−) 
and age, and one within-subjects variable, such as blocks of trials. When 
ANOVAs with repeated measures were conducted, the Huynh-Feldt adjust-
ment of α levels was used for all within-subjects effects containing more 
than two levels to protect against violations of the sphericity/compound 
symmetry assumptions underlying this ANOVA model.
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