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Introduction
Cell fusion is a fundamental process in the biology of eukary-

otic cells; it is essential for fertilization and occurs at key times 

during somatic development (White and Rose, 2001; Chen and 

Olson, 2005; Ogle et al., 2005). Yeast conjugation, or mating, 

can be divided into fi ve broad steps: cell to cell signaling, cell 

polarization, cell fusion, nuclear congression, and nuclear fu-

sion (Sprague and Thorner, 1992; Rose, 1996; Marsh and Rose, 

1997). Mating begins when two cells of the opposite mating 

type respond to the pheromones released by a nearby prospec-

tive mating partner. The cells repolarize to form shmoos; that is, 

each cell forms a projection with its apical end directed toward 

the prospective mating partner. The two cells adhere at the 

shmoo tips to form a prezygote. Degradation of the cell wall 

and fusion of the plasma membranes allow the cells to fuse, 

providing continuity of the two formerly separate cytoplasms. 

Finally, the nuclei congress in a microtubule-dependent manner 

(Molk et al., 2006), and the nuclear envelopes (NEs) fuse to 

produce a single diploid nucleus (Rose, 1991, 1996).

Like other fungi, Saccharomyces cerevisiae undergoes 

cell division and mating without NE breakdown (Byers, 1981a). 

Therefore, NE fusion is essential for the production of a diploid 

nucleus. However, the pathway controlling NE fusion is not 

well understood. Yeast NE fusion is a homotypic reaction in 

that both membranes correspond to the same subcellular com-

partment. However, nuclear fusion is inherently more complex 

than viral membrane fusion because it entails the fusion of two 

pairs of membrane bilayers. Therefore, it is analogous to the 

fusion of other organelles (Catlett and Weisman, 2000; Meeusen 

et al., 2004; Okamoto and Shaw, 2005). Like mitochondrial 

fusion, NE fusion requires the alignment and fusion of both inner 

and outer membranes.

Yeast karyogamy or kar mutants are defective in nuclear 

fusion and can be divided into two major categories. Type I 

mutants display defects in nuclear congression in that the nuclei 

fail to move together and typically exhibit defects in the cyto-

plasmic microtubules (Kurihara et al., 1994; Rose, 1996; Gammie 

and Rose, 2002). In type II mutant zygotes, the nuclei become 

closely apposed yet remain unfused (Kurihara et al., 1994). 

In certain class II karyogamy mutants, the apposed nuclei appear 

to be connected by membrane bridges that run between the 

outer nuclear membranes (Beh et al., 1997; Brizzio et al., 1999). 

Both of these classes of karyogamy mutants typically progress 

into mitosis, yielding haploid progeny.

All of the proteins known to be required for nuclear mem-

brane fusion (e.g., Kar2p, Kar5p, Kar7p/Sec71p, Kar8p/Jem1p, and 

Prm3p) are localized to the NE (Rose et al., 1989; Latterich and 

Schekman, 1994; Beh et al., 1997; Brizzio et al., 1999; Beilharz 

et al., 2003). However, one of the mysteries of NE  fusion is 
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n Saccharomyces cerevisiae, mating culminates in 

nuclear fusion to produce a diploid zygote. Two models 

for nuclear fusion have been proposed: a one-step model 

in which the outer and inner nuclear membranes and the 

spindle pole bodies (SPBs) fuse simultaneously and a three-

step model in which the three events occur separately. 

To differentiate between these models, we used electron 

tomography and time-lapse light microscopy of early stage 

wild-type zygotes. We observe two distinct SPBs in �80% of 

zygotes that contain fused nuclei, whereas we only see 

fused or partially fused SPBs in zygotes in which the site of 

nuclear envelope (NE) fusion is already dilated. This demon-

strates that SPB fusion occurs after NE fusion. Time-lapse 

microscopy of zygotes containing fl uorescent protein tags 

that localize to either the NE lumen or the nucleoplasm 

demonstrates that outer membrane fusion precedes inner 

membrane fusion. We conclude that nuclear fusion occurs 

by a three-step pathway.
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that many of the requisite proteins reside within the NE lumen, 

where it is unlikely that they could play a direct role in the ini-

tial stages of membrane fusion. Nevertheless, the genetic data 

are supported by in vitro fusion experiments that indicate a 

role for the luminal proteins Kar2p, Kar5p, and Kar8p/Jem1p 

in the overall fusion process (Kurihara et al., 1994; Latterich 

and Schekman, 1994). To date, it has been diffi cult to defi ne the 

role of these proteins, although their roles may be similar to 

functions that they are already known to perform in the ER 

(Rose et al., 1989; Ng and Walter, 1996; Nishikawa and Endo, 

1997; Brizzio et al., 1999; Nishikawa et al., 2001).

The yeast microtubule-organizing center, the spindle pole 

body (SPB), is critical to both nuclear congression and nuclear 

membrane fusion (for review see Jaspersen and Winey, 2004). 

The cytoplasmic microtubules that bring the two nuclei together 

during congression are nucleated from the half-bridge of the 

SPB (Byers, 1981a). Several type I karyogamy mutants have 

defects in SPB-associated proteins, including Kar1p and Mps3p 

(Rose and Fink, 1987; Nishikawa et al., 2003; for review see 

Jaspersen and Winey, 2004). During NE fusion, the SPBs are 

thought to dictate the initial site of membrane fusion (Byers and 

Goetsch, 1975). However, the steps of membrane fusion have 

remained unclear. Two models have been proposed to describe 

these steps (Fig. 1; Rose, 1996). In the one-step model, mem-

brane fusion occurs at the SPB, at whose margins the inner and 

outer membranes are continuous. Such fusion could allow the 

inner and outer nuclear membranes to fuse simultaneously. In the 

alternative model, nuclear fusion occurs in three separate steps. 

First, the outer membranes fuse, allowing the contents of the 

NE lumens to become continuous. Next, the inner membranes 

fuse, allowing continuity of the nuclear contents. Finally, the 

SPBs fuse within the plane of the membrane. Early electron 

microscopy studies supported the one-step model, with nuclear 

membrane and SPB fusion occurring simultaneously (Byers and 

Goetsch, 1974, 1975; Byers, 1981a; for review see Jaspersen 

and Winey, 2004). However, the luminal localization of proteins 

required for karyogamy, such as Kar2p, was diffi cult to reconcile 

with the one-step model.

We have used two experimental approaches to determine 

whether nuclear fusion during mating occurs via one or three 

steps. First, electron tomography (ET) was conducted on fi xed 

wild-type zygotes at different stages of nuclear fusion. ET is 

superior to serial section electron microscopy for the recon-

struction of spatial details in three dimensions in several ways 

(O’Toole et al., 2002). First, it allows the examination of thick 

slices of a cellular sample, provides images with essentially iso-

tropic resolution at 4–6 nm, and allows a fl exible analysis of 3D 

structures. Second, live cell time-lapse microscopy was con-

ducted on zygotes tagged with fl uorescent protein markers for 

each relevant compartment to map the stages of nuclear fusion. 

Live cell fl uorescence microscopy lacks the spatial resolution to 

visualize SPB fusion but, in contrast to static electron micros-

copy, allows direct determination of the temporal order of 

events. Thus, the two approaches complement one another. 

Collectively, our data show that nuclear fusion occurs by three 

distinct steps: outer membrane fusion, inner membrane fusion, 

and SPB fusion.

Results
ET of wild-type zygotes at different stages 
of nuclear fusion
Although the general stages of cell fusion and karyogamy have 

previously been described by electron microscopy (Byers, 1981a; 

Gammie et al., 1998), specifi c intermediates of nuclear fusion 

were not well characterized. Therefore, we elected to use ET to 

provide a more detailed examination of the outer and inner NE, 

the SPBs, and cytoplasmic microtubules during nuclear fusion.

Nuclear congression and membrane fusion occur within 

10–15 min after cell fusion, making it diffi cult to capture inter-

mediates in nuclear fusion (Maddox et al., 1999; and our un-

published data). To identify zygotes at the appropriate stage of 

mating just before and during membrane fusion, we scanned 

populations of mating cells by light microscopy to identify 

times at which a large fraction of the cells was at an appropriate 

stage of conjugation. These populations were cryoimmobi-

lized with a high pressure freezer, fi xed by freeze substitution, 

Figure 1. The three-step versus one-step models of nuclear fusion. A sche-
matic diagram of the one-step versus three-step models of yeast nuclear fusion. 
(A) In the one-step model, NE fusion occurs in a single concerted re-
action at the edge of the SPB, where the inner and outer NEs are continuous. 
(B) In the three-step model, outer NE fusion (1) precedes inner NE fusion 
(2), which precedes SPB fusion (3). To distinguish between the models, the 
two separate compartments (lumen of the NE and the nucleoplasm) were 
pre labeled with different fl uorescent proteins (GFP for the NE lumen, green 
vs. RFP or mCherry marker for the nucleoplasm; red). If the three-step model 
is correct, we expect to detect transfer of the NE lumenal marker to the mating 
partner before transfer of the nucleoplasm marker. SPB (blue) fusion would 
occur at a later step. Intermediates with two distinct SPBs in a single fused 
nucleus should be observed. If the one-step model is correct, both the NE 
lumenal marker and the nucleoplasm marker should initiate transfer at the 
same time, and no intermediates would be detected.
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 embedded in plastic, and serially sectioned for examination 

by ET (see Materials and methods). Individual sections were 

scanned at low magnifi cation to identify zygotes that were parallel 

to the plane of sectioning and that had a narrow zone of cell 

fusion (measured orthogonal to the long axis of the zygote), 

which indicated that cell fusion had occurred just before freezing. 

Such cells were found with a frequency of roughly one in 1,000. 

In this population, we identifi ed zygotes in which the NEs were 

unfused, in which NEs were partially fused, in which NE fusion 

had been completed, and at several stages of SPB fusion (see 

Figs. 2–4). Tomograms of 22 wild-type zygotes were analyzed 

(Table S1; available at http://www.jcb.org/cgi/content/full/jcb

.200706151/DC1). In some cases, it was possible to reconstruct 

two or three serial semithick sections, which provided 0.5–1 μm 

of sample thickness and an area of �2 × 4 μm in the section 

plane. From these 3D image data, models highlighting the rele-

vant cellular structures (outer and inner NE, SPBs, and micro-

tubules) were generated.

A representative model of a zygote, which had completed 

cell and NE fusion, is shown in Fig. 2, with all structures indi-

cated (see the tomographic slice in A and the model in D; also 

see Video 1, available at http://www.jcb.org/cgi/content/full/jcb

.200706151/DC1). Microtubules (Fig. 2 D, yellow) were traced 

from their point of nucleation near the SPB either to their true 

end or until they left the reconstructed volume (Fig. 2, C and D). 

The margins of the SPBs were traced in pink. Outer and inner 

nuclear membranes were traced on every fourth tomographic 

slice along the z axis, an interval of 4–5 nm (Fig. 2, D and E; 

green and blue, respectively). After the major cellular structures 

had been traced, IMOD software was used to mesh the outlines, 

providing a 3D rendering of the modeled objects (O’Toole 

et al., 2002). In the example shown in Fig. 2 D, the cell walls and 

plasma membrane (purple) were continuous, indicating that 

cell fusion had been completed. The nuclei were joined by con-

tinuous inner and outer nuclear membranes (Fig. 2, B and E; 

blue and green, respectively), indicating that NE fusion had 

been completed. Cell fusion had occurred recently in this zy-

gote, as indicated by the presence of vesicles near the zone of 

cell fusion (Fig. 2 D, red). In addition, the zone of cell fusion 

and region of nuclear fusion were both very narrow. Both re-

gions expand as the zygotes mature (Gammie et al., 1998). Often 

the NEs appeared to be stretched out in zygotes in which 

nuclear fusion had not advanced far beyond the initial stages. 

The stretched appearance may refl ect random movement of the 

nuclei and tension on the NEs. In Fig. 2, the stretching appeared 

asymmetric; however, in other zygotes, stretching was more 

symmetric (Fig. 3 B).

Outer NE fusion precedes inner NE fusion; 
membrane fusion precedes SPB fusion
The proximity of the nuclei, the morphology of the membranes, 

the position of the SPBs, and the width of the region of nuclear 

fusion (if present) were all used to order the zygotes along a 

presumed pathway of nuclear fusion. Tomograms were care-

fully examined to determine whether outer membrane fusion, 

inner membrane fusion, and SPB fusion had occurred. In a rep-

resentative tomogram of a mating pair that had completed cell 

fusion but not yet initiated nuclear fusion (Fig. 3 A), one can see 

two nuclei with both outer and inner membranes still separate 

(Fig. 3 A, green and blue, respectively). Note the elongated shapes 

of the nuclei, which narrow to a rounded point in the region 

closest to one another. Electron-dense material is visible at the 

tips of both nuclei. On either side of the forward edges of the 

nuclei are the SPBs embedded in the NE (Fig. 3 A, pink disks). 

The dark-stained layers extending from the margins of the 

SPBs over the forward edges of the nuclei are the half-bridges. 

Figure 2. Nuclear membrane fusion precedes SPB fusion in wild-type 
mating cells as visualized by ET. (A) A representative tomographic slice of 
a zygote fi xed at an early stage of NE fusion. (B) A magnifi ed view of the 
region of NE membrane fusion. Note that the image in B is rotated �20° 
clockwise relative to A. (C) A magnifi ed view of the SPBs in the zygote 
 depicted in A. The image is from a different tomographic slice than in A. 
(D) The model corresponding to the tomographic slice shown in A, highlighting 
various cellular structures. Structures modeled include the outer NE (green), 
inner NE (light blue), SPB central plaques (pink), microtubules (yellow), 
plasma membrane (purple), and vesicles (pink and red spheres). (E) The 
same model displaying only the inner NE and the central plaques of the 
SPB. C, cytoplasm; CW, cell wall; m, microtubule; N, nucleus; NE, nuclear 
envelope; NEF, region of NE fusion; PM, plasma membrane; rb, ribosome; 
s, SPB; v, vesicle. Bars, 100 nm.
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Cytoplasmic microtubules were observed connecting the two 

SPBs but have been omitted from the models for clarity. Vesicles 

clustered near the remnant cell walls at the zone of cell fusion 

indicate that cell fusion had occurred recently in this zygote.

In 21 of our 22 tomograms, NE fusion had been initiated 

or completed. One tomogram appeared to capture a particularly 

interesting intermediate in NE fusion (Fig. 3 B). Although the 

SPBs were unfused (Fig. 3 B, left), a different tomographic 

slice showed that the outer nuclear membranes were continuous 

(Fig. 3 B, middle; green in model). Close examination of slices 

through the region of fusion showed that the inner membranes 

were closely apposed but still distinct (Fig. 3 B, middle; arrow-

head; light blue in model panel), indicating that outer NE fusion 

must precede inner envelope fusion. It is likely that this zygote 

represents a true intermediate caught just after the initiation of 

NE fusion, but this state has been observed only once. Because 

of the rarity of this class, it is formally possible that this image 

represents an aberrant event in which nuclear fusion had not 

proceeded normally. Therefore, this issue was examined with 

an alternative method (see below).

Both the outer and inner membranes were continuous 

 between the two nuclei in 20 tomograms, indicating that NE fu-

sion had been completed at the time of rapid freezing (Figs. 2 C 

and 4, A–D). In seven of these zygotes, two completely separate 

and distinct SPBs were observed (Figs. 2 E and 3, A and B), 

demonstrating that SPB fusion had not yet occurred. In zygotes 

with separate, unfused SPBs, the median width of the nucleus at 

the region of fusion was only 110 nm (measured across the nar-

rowest part of the nucleus between the outer edges of the NE; 

SD = 30 nm, with one outlier of 302 nm; Fig. 3 C). The narrow-

ness of the isthmus suggests that these zygotes had only just 

completed nuclear fusion.

The last group of 13 tomograms included zygotes with 

SPBs in the process of fusion or already fused SPBs (Fig. 4). 

In all such zygotes, both inner and outer NE fusion was com-

plete. In eight zygotes in the initial or intermediate stages of SPB 

fusion, the nuclear fusion zone had widened to a median width of 

153 nm (SD = 92 nm; one outlier of 1,415 nm; Fig. 3 C). In fi ve 

zygotes, SPB fusion was either complete or almost complete. 

In the four zygotes in which the membranes could be measured, 

the nuclear fusion zone had expanded to a median width of 

567 nm (SD = 93 nm). Collectively, these data demonstrate that 

SPB fusion occurs considerably after the completion of nuclear 

membrane fusion.

Six layers of the SPB can be detected by ET (O’Toole 

et al., 1999). The central plaque, which is embedded in the 

NE, is one of the most electron-dense layers, and this struc-

ture was modeled to mark the location of the SPB. Extending 

from the margin of each SPB is the half-bridge, an electron-

dense region of the NE (for review see Jaspersen and Winey, 

2004). By ET, the half-bridge is made up of fi ve layers (O’Toole 

et al., 1999).

Several distinct morphologies of SPBs were seen in cells 

frozen during the course of nuclear fusion, suggesting that SPB 

Figure 3. NE fusion occurs in multiple steps in wild-type cells. (A and B) Tomograms depicting zygotes before (A) and during (B) NE fusion. (A) A slice 
through a tomogram of wild-type mating in which cell fusion but not nuclear fusion has occurred. The left panel shows a low magnifi cation of the zygote, 
the middle panel shows a magnifi ed view of the SPBs, and the right panel shows a model highlighting the details of the SPBs and nuclear membranes. The two 
SPB half-bridges are on the leading edge of the NEs, with central plaques on either side. (B) A zygote in which outer nuclear membrane fusion has occurred 
but not inner membrane fusion. The left panel shows a slice through the two SPBs, and the middle panel shows a slice deeper in the tomogram through 
the central region of membrane fusion. The closely apposed but unfused inner NEs are indicated by an arrowhead. On the right side of the NEs are the 
half-bridges extending from the SPBs, which are not visible in this slice. The NEs on the left side were more visible in other slices. The corresponding model 
has been rotated about the x axis to show the gap between the two inner membranes. hb, half-bridge; m, microtubule; N, nucleus; s, SPB. In the model 
images, the SPB central plaques (pink) and the outer and inner NEs (green and light blue, respectively) are indicated. (C) SPB fusion occurs after partial 
dilation of the nuclear fusion pore. Graphs plotting the width of the nucleus across the narrowest constriction, measured from the outer edge of the NEs, in 
different classes of zygotes. 1, after membrane fusion but before SPB fusion (n = 8); 2, after initiation of half-bridge fusion (n = 8); and 3, partially or com-
pletely fused SPB central plaques (n = 4). Bars, 100 nm.
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fusion may occur in several stages. In 8 of the 13 zygotes, the 

central plaques of the SPBs were clearly separate but joined by 

their half-bridges. Fig. 4 A shows a representative tomogram in 

which two central plaques are joined by the multilayered half-

bridge. In one zygote, the half-bridges appear to have become 

joined along their lateral margins; although the central plaques 

were close together, they had not yet fused (Fig. 4 B). This situ-

ation is particularly evident when the SPBs were viewed en face 

rather than in cross section (Fig. 4 B, middle and inset). In two 

zygotes, the SPB central plaques appeared to be partially fused 

(Fig. 4 C). Finally, in two zygotes, we found only a single SPB 

central plaque, implying that fusion was complete (Fig. 4 D). 

Based on these observations, a reasonable order for the pathway 

of SPB fusion would entail interactions fi rst between the half-

bridges, most likely via lateral interactions along the half-bridge 

margin, followed by fusion of the central plaques. Regardless of 

the detailed pathway of SPB fusion, these results clearly show 

that SPB fusion occurs as a secondary event and does not initi-

ate NE fusion.

Using fl uorescent markers to follow nuclear 
membrane fusion in live cells
ET is not well suited to distinguish closely spaced temporal 

events. To complement ET, we developed a method to observe 

nuclear fusion in live cells using fl uorescently tagged proteins 

as markers for different cellular compartments. To observe SPB 

congression relative to NE fusion, we initially used Spc42p-

RFP to mark the SPB and SS-3XGFP-HDEL to label the lumen 

of the NE (Fig. 5 and Video 3, available at http://www.jcb.org/

cgi/content/full/jcb.200706151/DC1). Spc42p is a key compo-

nent of the SPB central plaque (Donaldson and Kilmartin, 

1996). SS-3XGFP-HDEL is translocated into the lumen of both 

the NE and ER because of the secretory signal sequence (SS) at 

its N terminus, and it is retained in the NE/ER by virtue of the 

C-terminal ER retention signal (HDEL). The signal sequence 

is cleaved after translocation, so the fl uorescing protein will 

hereafter be referred to as 3XGFP-HDEL. The NE and ER are 

continuous in yeast; however, the 3XGFP-HDEL signal appears 

substantially brighter in the NE, as previously observed for 

Figure 4. The stages of SPB fusion. (A–D) Four 
stages of SPB fusion are shown, including half-
bridge fusion (A), SPBs closely apposed (B), cen-
tral plaques fusing (C), and fused central plaques 
(D). The left panel of each row presents a repre-
sentative slice through the tomogram showing the 
SPBs in cross section. The middle panel shows 
magnifi ed images of the SPBs in a partial cross 
section for A and en face for B–D. The right panels 
show models indicating the outer and inner NEs 
(green and light blue, respectively) and the SPB 
central plaques (pink) at this stage. Insets in model 
images have been rotated along the y axis to 
show the SPBs more en face. In A, two half-bridges 
have joined together, whereas the two central 
plaques remain distinct. In B, the SPB central 
plaques are close together but unfused. In C, the 
central plaques are partially fused. In D, the SPB 
central plaques have joined together to make a 
single plaque. In the middle panels, the tomo-
grams were rotated about a z axis centered on the 
SPBs to make their cross section vertical and were 
rotated about the y axis to view the SPBs partially 
or completely en face. HB, half-bridge; N, nucleus; 
SPB, spindle pole body. Bars, 100 nm.
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 lumenal proteins (Rose et al., 1989). Data collection was initi-

ated at or soon after cell fusion, as judged by the appearance of 

the zygotes by differential interference contrast microscopy.

In the example shown in Fig. 5 A, the SPBs were already 

in close proximity at the beginning of the experiment (t = 1), 

indicating that nuclear congression had already occurred. Initially, 

the donor NE was bright, and the acceptor NE was dim. As the 

experiment progressed, the acceptor NE gradually increased in 

fl uorescence. The initial gradual increase in fl uorescence will be 

referred to as the slow phase of 3XGFP-HDEL transfer. At 6 min 

after the initial observation, the acceptor NE abruptly increased 

in fl uorescence. The increase in acceptor NE fluorescence was 

accompanied by a rapid decrease in donor NE fl uorescence as 

the two NEs approached equilibrium. The acceptor reached 50% 

of the equilibrium value within �2.5 min after the onset of 

the rapid phase of transfer. Concomitant with the rapid phase of 

3XGFP-HDEL transfer, the two NEs could be seen to separate 

at the site of fusion along a line parallel to the axis of the two 

nuclei, which is indicative of the widening of the nuclear fusion 

pore (Fig. 5 A, 11-min time point). The transfer of 3XGFP-HDEL 

from donor to acceptor is quantifi ed in Fig. 5 B based on mea-

surements described in Materials and methods.

Interestingly, in rare examples, such as that shown in 

Fig. 5 A, the Spc42p-RFP spot formed from the two SPBs was 

observed to separate into two spots after the NEs had begun 

to fuse (t = 8). The two Spc42p-RFP spots remained apart un-

til the 12-min time point when they merged, after which they 

 remained together, even as the NE widened. Thus, the behavior 

of the Spc42p-RFP in this zygote is consistent with ET, which 

showed that SPB fusion occurs after NE fusion.

To confi rm that the fast phase of the NE luminal fi lling 

was caused by NE fusion, we observed 3XGFP-HDEL in mat-

ings of karyogamy mutants in which nuclear fusion is blocked. 

Mutation in the KAR1 gene causes a block in nuclear congres-

sion as a result of defects in the function of the cytoplasmic micro-

tubules (Fig. 5). Nuclear membrane fusion does occur in the 

rare zygotes of this genotype wherein the nuclei become closely 

apposed by chance (Rose, 1991). In kar1-1 X wild-type mat-

ings, the two nuclei did not congress, as demonstrated by 

the presence of two distinct RFP-labeled SPB dots (Fig. 5 B). 

The acceptor NE showed a gradual increase in fl uorescence in -

tensity but never a transition to the rapid phase of 3XGFP-HDEL 

transfer (Fig. 5 D and not depicted). The GFP fl uorescence in 

the donor NE remained considerably brighter than the acceptor 

NE throughout the course of the experiment. Given the depen-

dence of the rapid 3XGFP-HDEL transfer on proteins required 

for karyogamy and the temporal correlation of this transfer with 

the onset of NE expansion, we conclude that the rapid phase of 

transfer is indicative of the onset of NE fusion. Most likely, the 

rapid phase of transfer corresponds to the dilation of the mem-

brane fusion pore. We surmise that the slow phase of 3XGFP-

HDEL transfer is caused by the recycling of HDEL-bearing 

proteins from the Golgi to the NE/ER of both parents. Although 

this introduces a small amount of background fl uorescence, a 

Figure 5. Transfer of an NE/ER lumenal marker can be used as an indicator of nuclear membrane fusion. (A) A time-lapse experiment (1-min time points) 
of two mating yeast cells that have completed cell fusion and are undergoing nuclear fusion. SPB congression has already occurred at the start of the experi-
ment, as indicated by the single spot of Spc42p-RFP fl uorescence (red). The NE/ER lumen was visualized using a 3XGFP-HDEL marker (green). After a slow 
phase of increased fl uorescence in the recipient nucleus starting at minute 6, there is a rapid increase in fl uorescence in the recipient nucleus. (C) In the 
graph, a rapid shift in the fraction of total GFP from the donor to the recipient nucleus was initiated at time point 6. Note the separation of SPBs in time 
points 9–12. (B and D) In a kar1 nuclear fusion mutant, the slow phase but not the rapid phase of GFP-HDEL transfer was observed. In the kar1 matings, 
the two SPBs did not congress (two red dots). WT, wild type.
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sharp transition between the slow and rapid phases could be 

readily discerned in almost all zygotes.

Direct tests of the nuclear fusion models 
using live cell microscopy
Transfer of lumenal 3XGFP-HDEL to the acceptor NE/ER is 

indicative of outer NE fusion, but it does not provide informa-

tion about the last step of NE fusion, the fusion of the inner nu-

clear membranes. In principle, this may occur either at the same 

time as outer membrane fusion as part of a single concerted re-

action or as a temporally distinct event. To reveal inner nuclear 

membrane fusion, we developed an assay based on the transfer 

of a nucleoplasmic marker from a donor nucleus to an acceptor 

nucleus. We tested several nucleoplasmic markers, including 

NLS-tagged fl uorescent proteins, fl uorescent protein–tagged 

histones, and fl uorescent protein–tagged poly (A) polymerase. 

NLS-CFP and -YFP exhibited high levels of background cyto-

plasmic localization as well as rapid transfer into unfused nu-

clei, presumably because of rapid shuttling between the nucleus 

and cytoplasm (Damelin and Silver, 2000 and our unpublished 

data). Fluorescent protein–tagged histones exhibited very low 

cytoplasmic background and no observable transfer between 

unfused nuclei. However, fl uorescent chromatin from the two 

haploid nuclei remained segregated as distinct domains in 

the newly formed diploid nucleus (unpublished data), which 

 obscured attempts to determine a precise time for the comple-

tion of nuclear fusion. Ultimately, fl uorescent protein–tagged 

poly (A) polymerase (Pap1p) was found to be suitable for our 

studies. Fluorescent protein–tagged Pap1p showed both a low 

 cytoplasmic background and a uniform distribution within the 

nucleus, presumably because its diffusion is not limited by sta-

ble association with nuclear polymers (Lingner et al., 1991a).

We used FRAP to determine whether there were funda-

mental differences in the rate of diffusion between 3XGFP-

HDEL and fl uorescent protein–tagged Pap1p fusions that might 

cause differences in their observed rates of transfer. In this tech-

nique, a small region of the cell containing the fl uorescent protein 

was bleached, and the bleached area was monitored for recov-

ery of the fl uorescent signal. The rate of diffusion can be measured 

from the rate of fl uorescence recovery. For these experiments, 

we performed FRAP analysis on 3XGFP-HDEL and Pap1p-

GFP. Pap1p-GFP was used instead of the Pap1p-RFP or Pap1p-

mCherry (monomeric Cherry fl uorescent protein) constructs used 

in the time course experiments because the RFPs were diffi cult 

to bleach with available laser lines. However, GFP and RFP 

diffusion rates have been previously shown to be very similar 

(Nolan et al., 2006). Thus, any substantial differences in the 

 behaviors of fl uorescent protein–tagged Pap1p and 3XGFP-HDEL 

would be the result of differences in the Pap1p and HDEL portions 

of the chimeras. We found that Pap1p-GFP and 3XGFP-HDEL 

exhibited similar rates of recovery (Fig. 6), with Pap1p-GFP 

diffusing somewhat faster than 3XGFP-HDEL (mean t1/2 = 0.16 s 

[n = 18] vs. 0.22 s [n = 20], respectively). Thus, any delay ob-

served for fl uorescent protein–tagged Pap1p relative to 3XGFP-

HDEL would likely underestimate the true difference. The 

recovery of Pap1-GFP and 3XGFP-HDEL averaged 97% and 

96%, respectively, taking into account the reduced pool of un-

bleached fl uorescent protein.

Figure 6. FRAP analysis using 3XGFP-HDEL and Pap1-GFP. (A and B) FRAP analysis was performed on cells expressing either 3XGFP-HDEL (A) or Pap1-
GFP (B). The graphs show the initial fl uorescence intensity in the ROIs in fi ve images, a rapid drop in fl uorescence intensity in the bleached area, and recovery 
of fl uorescence intensity in the bleached area. Three prebleach images are shown, with the area to be bleached indicated by a rectangle in the last 
prebleach image. Representative postbleach recovery images are shown from the time course, lasting just under 3 s.
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After establishing that there were no substantial differ-

ences in the diffusion rates of the marker proteins, we performed 

time-lapse microscopy of zygotes in which both proteins were 

present. Cells of one mating type were labeled with 3XGFP-

HDEL and mated with cells of the opposite mating type labeled 

with Pap1p-RFP or Pap1p-mCherry (Fig. 7). A total of 47 zy-

gotes were imaged, with images taken every 1 min, 30 s, or 20 s. 

In each, the fl uorescence intensity was measured on equivalent 

areas of the donor and recipient and corrected for background 

fl uorescence using a region outside the cell. Photobleaching dur-

ing the course of the experiment was corrected by fi tting the 

measurements to a fi rst-order exponential.

In the zygote shown in Fig. 7, the shift from the slow 

phase to the rapid phase of 3XGFP-HDEL transfer occurred at 

�5 min, reaching a half-maximal transfer within 2 min (Fig. 7 B). 

In contrast, the fi rst time point in which a considerable amount 

of Pap1-RFP fl uorescence was observed in the recipient nucleus 

was at 6 min. Extrapolation of the initial slope to the x axis sug-

gested that transfer initiated at �5.5 min, reaching half-maximal 

transfer at �7 min. Subsequent experiments in which images 

were acquired every 20 or 30 s provided greater  temporal re-

solution of the two fusion events (Fig. 7, C and D). Out of the 47 

zygotes examined, 32 exhibited clear temporal separations be-

tween the initiation times of marker protein transfer, and fi ve 

showed no measurable delay (Fig. 7 E). The remaining 10 zy-

gotes were not interpretable because the transfer had begun be-

fore beginning the observation, transfer did not occur during the 

observation period, or the shift from the slow to rapid phase of 

3XGFP-HDEL transfer was not suffi ciently pronounced to 

determine the time of initiation. As expected, the number of zy-

gotes in which a temporal delay could not be discerned was 

dependent on the density of time points (3/13 for 1 min, 1/10 for 

20 s, and 1/14 for 30 s experiments). The median time for all 37 

interpretable zygotes was 30 s (40 s for the 10 zygotes imaged 

at 20-s intervals). Two of the zygotes examined using 20-s time 

points showed unusually long delays in the time of initiation 

of Pap1p-mCherry transfer relative to 3XGFP-HDEL transfer 

(440 and 620 s). Because the more rapid time point experiments 

necessitated increased exposure to the excitation light, these may 

represent photodamaged cells. When these two cells were omitted 

from the analysis, the mean time delay for the 20-s  interval image 

sets was 31.25 s and for all image sets was 29 s (n = 35; SD = 17). 

Figure 7. Transfer of the NE/ER luminal 
marker can be detected before nucleoplasmic 
mixing. (A) A time-lapse experiment after the 
transfer of 3XGFP-HDEL and the reciprocal 
transfer of Pap1-RFP in wild-type mating cells 
at 1-min intervals. Note the fi lling of the recipi-
ent NE lumen in time point 5 (green-bordered 
panel), whereas visible transfer of the nucleo-
plasmic marker does not occur until time point 6 
(red-bordered panel). (B) The fraction of total 
GFP and RFP in the donor and recipient nuclei 
over time. The initial time of GFP transfer was 
determined from the intersection between the 
slopes of the slow and rapid phases of transfer, 
occurring at 4 min in this example. The initial 
phase of RFP transfer was determined similarly, 
occurring �30 s after GFP transfer. The initial 
times are indicated by dotted lines on the graph. 
(C and D) Two representative graphs from time-
lapse experiments using 30-s and 20-s time 
points, respectively. In these particular experi-
ments, Pap1-mCherry was used instead of RFP. 
Note that initiation of the rapid transfer of GFP 
from the donor to the recipient was detected 
before rapid transfer of the nucleoplasmic marker 
(indicated by dotted lines on graph). (E) A histo-
gram of the difference between the initial times 
of transfer measured for GFP and RFP/mCherry 
observed using time-lapse microscopy (n = 47). 
FP, fl uorescent protein.
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We conclude that inner NE fusion occurs after outer NE fusion 

in two distinct membrane fusion events. Taking these data 

together with the ET, we conclude that nuclear fusion occurs in 

three steps, culminating in the formation of a diploid nucleus 

with a single fused SPB.

Discussion
In this study, both ET and live cell microscopy were used to 

 examine the details of nuclear fusion during yeast conjugation. 

ET revealed several nuclear morphologies consistent with nuclei 

poised at various intermediate stages of nuclear fusion, including 

outer membrane fusion, inner membrane fusion, SPB satellite/

bridge fusion, and SPB fusion. In one example, outer membrane 

fusion was observed without inner membrane  fusion, suggesting 

that outer membrane fusion precedes inner nuclear membrane 

 fusion. In addition, consistent with the hypothesis that nuclear mem-

brane fusion precedes SPB fusion, complete nuclear membrane 

fusion was observed in zygotes that still had distinct SPB central 

plaques. Apparent intermediates in SPB fusion were seen in 

 zygotes with expanded nuclear fusion pores, indicating that SPB 

fusion occurs considerably later than nuclear membrane fusion. 

By live cell microscopy, initiation of the transfer of a luminal NE 

marker was detected �30 s before transfer of a nucleoplasmic 

marker, indicating that outer membrane fusion precedes inner 

membrane fusion. Collectively, these data demonstrate that bud-

ding yeast nuclear fusion occurs in at least three distinct stages.

The role of the half-bridge in SPB fusion
The observation of nuclear membrane fusion before SPB fusion 

was surprising given a previous study suggesting that fusion of 

the SPB plaques is the initial event, occurring simultaneously 

with nuclear membrane fusion (Byers and Goetsch, 1975). It is 

likely that the differences between these studies are the result of 

both the reliability of rapid freezing as a way to immobilize cel-

lular events with high structural precision and the greater 3D 

resolution of ET. Initial fusion intermediates comprise as little 

as 5 nm of membrane length in a 2D view and, thus, could easily 

have been missed by techniques dependent on serial sectioning.

Both our work and a previous study have shown the key 

role of SPB half-bridges in the fusion process (Byers and 

Goetsch, 1975). The half-bridges are the sites of nucleation for 

the cytoplasmic microtubules that pull the nuclei together for 

fusion during mating. As a result, the half-bridges become lo-

cated adjacent to the site of nuclear membrane fusion, whereas 

the central plaques are initially more peripheral. From our data 

(Fig. 4) and previous work (Byers and Goetsch, 1975), SPB fu-

sion appears to initiate along the lateral edge of the half-bridge, 

culminating in side by side fusion of the central plaques. Note 

that the original one-step model required that the two SPBs be 

in one specifi c orientation at the end of congression to allow 

their fusion along their lateral edges. However, a substantial 

fl aw of the model was that it did not provide a mechanism to 

ensure that the two SPBs would be properly aligned about the 

axis of the cytoplasmic microtubules. In the three-step model, 

the SPBs become coplanar within the NE before their fusion, 

with the half-bridges roughly proximal to each other. After move-

ment together within the plane of the NE, SPB fusion would 

then necessarily occur along their lateral margins.

Recently, the half-bridge has been shown to be composed, 

in part, of a parallel assembly of a conserved, centrin-binding, 

centrosomal protein Sfi 1p (Li et al., 2006). The Sfi 1p molecules 

in this assembly are arranged with their N termini next to the 

SPB and their C termini extending outward, providing polarity to 

the overall structure of the half-bridge (Li et al., 2006). The in-

herent polarity of Sfi 1p in the half-bridge may provide a mecha-

nism for orienting the association between the two SPBs. Lateral 

association of Sfi 1p fi laments would serve to align the initially 

randomly oriented SPBs within the plane of the NE, assuring that 

the two SPB central plaques fuse into a single diploid SPB.

The fi nal step in SPB fusion entails a third membrane fusion 

event, when the two central plaques coalesce into a single plaque. 

The central plaques are embedded in the NE similar to nuclear 

pores, with the inner and outer membranes joined at the edges. 

As the two plaques come together, topological considerations dic-

tate that the inner and outer membranes must pinch together and 

fuse to allow the two SPBs to form into one. It is possible that 

proteins associated with the half-bridge aid in this late stage or in 

the earlier formation of the nuclear fusion pore. During SPB 

duplication, the bridge is thought to play a role in facilitating 

the membrane embedment of the nascent SPB (for review see 

Jaspersen and Winey, 2004), which must involve fusion of the 

inner and outer nuclear membrane to form a pore in the NE.

Details of nuclear fusion revealed by ET and 
live cell microscopy
Although ET captured only static views of intermediates in nu-

clear fusion, live cell microscopy permitted the observation of 

nuclear fusion in real time. Whereas short-lived intermediates 

are only rarely sampled and diffi cult to identify by static imag-

ing, all live cells would necessarily transit through the inter-

mediate stage, however short their duration. Considering the 

events of NE fusion, the initiation of transfer of Pap1-mCherry 

or -RFP occurred �30 s after 3XGFP-HDEL (Fig. 7). The overall 

time course of nuclear fusion after cell fusion is �10–15 min 

(Maddox et al., 1999; and this  study), predicting that zygotes in 

which outer NE fusion but not inner NE fusion had occurred 

should be very rare. Consistent with this prediction, only one 

such zygote was observed by ET out of a total of 22 examined.

Conversely, live cell imaging does not yet provide suffi -

cient spatial resolution to detect the detailed events of SPB fu-

sion. Remarkably, in a few cases, the two SPBs were observed 

to separate and rejoin after membrane fusion, confi rming the 

results from ET that SPB fusion occurs only later. The live cell 

imaging also suggests that the SPBs have considerable freedom 

of movement within the plane of the membrane before fusion. 

Free movement and rotation would likely be necessary to allow 

the two haploid SPBs to align for proper fusion to form a single 

diploid SPB. These results also confi rm that during mating, the 

SPB has a remarkable level of plasticity to allow fusion of two 

distinct structures into one single diploid SPB.

FRAP confi rmed that the temporal order was not simply 

the result of different rates of fl uorescent protein diffusion. 

The half-time of recovery for Pap1p-GFP was somewhat faster 
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than 3XGFP-HDEL (mean t1/2 = 0.16 s vs. 0.22 s, respectively). 

Similarly, the rate of transfer from the donor nucleus to the 

 recipient nucleus was substantially faster for the Pap1p hybrids 

than for 3XGFP-HDEL. The slower transfer of the earlier trans-

ferring protein would lead to an underestimate of the time de-

lay, reinforcing the conclusion that the two events are temporally 

distinct. However, in each case, the half-time of transfer (1–2 min) 

was also many times slower than the half-time of recovery after 

photobleaching. Unlike FRAP, the rate of transfer between the 

nuclear compartments is likely to be impeded by the geometry 

of the fusion pore connecting them. Similar effects have been 

observed on the transfer of cytoplasmic proteins during cell 

fusion (Nolan et al., 2006).

Phenotypic analysis using newly defi ned 
nuclear fusion stages
Given that nuclear fusion occurs in multiple steps, it is likely that 

the kar mutations that block NE fusion may affect different steps. 

For example, it should now be possible to distinguish karyogamy 

mutants that are profi cient in outer membrane fusion yet defi cient 

in inner membrane fusion. The possibility that some mutations 

block inner NE fusion might explain why most mutations block-

ing NE fusion affect components localized within the lumen of 

the NE. Mutations affecting outer NE fusion have been harder to 

fi nd, possibly because of effects on the secretory  pathway as 

well. Similarly, mutants may be identifi ed that complete nuclear 

membrane fusion but block at some stage of SPB fusion, pro-

vided these mutants are not also impaired in congression.

Collectively, these data permit a rather detailed description 

of nuclear fusion in the budding yeast. NE fusion occurs in two 

steps followed by SPB fusion, which is consistent with the predic-

tions of the three-step model. However, ET suggests that SPB 

 fusion also occurs in several steps. The two SPBs must move to-

gether within the plane of the NE followed by lateral association of 

the half-bridges, culminating in the merger of the central plaques. 

Future studies will address how outer NE- and/or SPB-associated 

proteins facilitate the initiation of nuclear and SPB fusion.

Materials and methods
Strains and yeast methods
All strains used in this study are listed in Table I. Yeast media was pre-
pared, and general methodology was followed as described previously 
(Rose et al., 1990; Amberg et al., 2005). Genomic integrations of GFP, 
monomeric RFP (mRFP), and mCherry fl uorescent tags at the C terminus of 
PAP1 and SPC42 were conducted using previously published vectors and 
methods (Longtine et al., 1998). R.Y. Tsien (University of California, San 
Diego, San Diego, CA) provided the mCherry and mRFP fl uorescent tags, 
S. Clark (Princeton University, Princeton, NJ) provided mRFP and mCherry 
kanMX constructs, and N. Erdeniz (Princeton University) provided the SS-
3XGFP-HDEL construct. The SPC42-mRFP was fully functional and supported 
normal rates of growth and nuclear fusion. In brief, primers were designed 
to amplify the integration cassette, adding �40 base pairs of homology to 
the chromosomal region of interest at either end of the fragment to facilitate 
integration. PCR products were pooled and gel purifi ed. Then, the strain of 
interest was transformed. Transformants were checked for proper integra-
tion using a diagnostic PCR. Existing GFP integration cassettes were modi-
fi ed for mRFP (pMR5484) and mCherry (pMR5597) integration by the 
same method using the same primers. During the course of the study, RFP 
constructs were replaced with mCherry constructs because of the improved 
stability of this red fl uorescent marker (Shaner et al., 2005).

Preparing mating mixtures for ET
Individual liquid cultures of MATα and MATa strains were prepared and 
mated together as described previously (Gammie and Rose, 2002). For ET, 
mating mixtures were mated on a nitrocellulose fi lter disk for 2.5 h at 30°C. 
Cells were prepared for electron microscopy as reported previously 
(O’Toole et al., 2002; Yoder et al., 2005). In brief, mating cells were re-
suspended in liquid medium, collected by centrifugation, frozen under high 
pressure, and subsequently freeze substituted in acetone containing 2% 
 osmium tetroxide and 0.1% uranyl acetate at –90°C for 3 d. Cells were 
subsequently warmed to –20°C for 12 h, rinsed in acetone, warmed to 
room temperature over 2 h, and embedded in epoxy resin. Serial semithick 
sections (200–300 nm) were cut using a microtome (Reichert Ultracut-E; 
Leica), collected on Formvar-coated slot grids, and stained with aqueous 
uranyl acetate and Reynolds lead citrate. 15-nm colloidal gold particles 
(Sigma-Aldrich) were applied to both surfaces of the sections to use as fi ducial 
markers during image alignment.

Electron microscopy, tomography reconstruction, and modeling
ET was conducted as described previously (O’Toole et al., 2002). In brief, 
sections were placed in a high-tilt specimen holder (Gatan), and images 
were recorded using a Tecnai TF20 or TF30 intermediate voltage electron 
microscope (FEI) operated at 200 kV or 300 kV, respectively. Using a ro-
tating sample holder, electron microscopy images were captured every 1° 
over a ±60° range using a CCD camera (2K by 2K; Gatan). To collect 
dual-axis datasets, the grid was rotated 90°, and a second tilt series was 

Table I. Strains and plasmids

Strain Genotype Source or reference

MS23 MATα, trp1-∆1, lys2-801, ade2-101 Rose laboratory

MS1554 MATa, ura3-52, leu2-3,112, ade2-101, his3-∆200 Rose laboratory

MS740 MATα, leu2-3,112, ura3-52, ade2-101, kar1-1 Rose laboratory

MS7814 Same as MS740 except SPC42:mRFP This study

MS1686 MATα, his3-∆200, ura3-52, leu2-3,112, ade2-101, trp1-∆1 Rose laboratory

MS7816 Same as MS1686 except PAP1:mRFP This study

MS1691 MATa, his3-∆200, ura3-52, leu2-3,112, ade2-101, trp1-∆1 Rose laboratory

MS7818 Same as MS1691 except pMR5029 This study

MS7728 Same as MS1691 except SPC42:mRFP This study

MS7748 Same as MS7728 except SS-3XGFP-HDEL (TRP1) This study

MS2290 MATα, his3-∆200, ura3-52, leu2-3,112, trp1-∆1 Rose laboratory

MS7840 Same as MS7840 except PAP1:mCherry This study

MS7848 Same as MS1691 except PAP1:GFP This study

Plasmid Relevant markers Source or reference
pMR5029 SS-3XGFP-HDEL in pRS414 (TRP1) N. Erdeniz, Rose laboratory

pMR5484 pFa6a-mRFP-kanMX6 S. Clark and R. Tsien

pMR5597 pFa6a-mCherry-kanMX6 S. Clark and R. Tsien
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collected. Tomography reconstructions were calculated, displayed, and 
analyzed using the IMOD software package (Kremer et al., 1996). The 
single-axis tomograms were aligned to each other and combined to create 
a single tomogram (Mastronarde, 1997). Objects such as microtubules, 
outer and inner NEs, and SPBs were modeled on the tomography recon-
structions using the same software. 21 tomograms and models of wild-type 
mating yeast cells were generated. Nuclear fusion pore dilation was mea-
sured using IMOD software. Measurements were taken between the outer 
envelopes at the narrowest point in the zone of fusion.

Live cell microscopy data collection and analysis
For live cell microscopy, mating mixtures were prepared as described pre-
viously (Gammie and Rose, 2002). However, instead of transferring mating 
mixtures to a nitrocellulose fi lter, cells were immediately transferred to a 2% 
agarose pad (in synthetic complete media) on a microscope slide and in-
cubated at RT for 1.5 h before data collection.

Time-lapse microscopy was conducted using a microscopy system 
(DeltaVision; Applied Precision) based on an inverted microscope (TE200; 
Nikon) and a CCD camera (CoolSNAP HQ; Photometrics). For all images, 
a 100× NA 1.4 Apochromat oil immersion objective (Nikon) was used. 
At various time points, a GFP image (FITC fi lter set) and an mCherry/RFP 
image (rhodamine fi lter set) were captured at 0.5-μm intervals for a 
10-section z stack. Images were deconvolved using the constrained itera-
tive program in softWoRx (Applied Precision). Images were prepared for 
publication with Photoshop (Adobe) using linear contrast and intensity 
adjustments. Where necessary, image size was increased using bicubic 
resampling. Time-lapse experiments successfully capturing zygotes be-
fore, during, and after nuclear fusion as judged by 3XGFP-HDEL transfer 
were analyzed. Zygotes with a weak 3XGFP-HDEL signal or zygotes too 
early or too late in nuclear fusion were not analyzed further. By these 
criteria, �50% of the zygotes were unusable. GFP and mCherry/RFP 
fl uorescence in donor and recipient cells was analyzed on the decon-
volved images using ImageJ (National Institutes of Health). For each time 
point, the mean fl uorescence intensity was determined for a region of 
 interest (ROI) encompassing the donor nucleus. Equal-sized ROIs encom-
passing the recipient nucleus and neighboring background areas of 
the slide were also measured. The integrated fl uorescence intensity was 
calculated and corrected fi rst for background signal and then for photo-
bleaching using a simple fi rst-order exponential decay model. The cor-
rected integrated intensities for donor and recipient were expressed 
and graphed as the fraction of total fl uorescence, taking the sum of the 
donor and recipient ROIs as 100%. 3XGFP-HDEL transfer was biphasic, 
with a slow transfer phase followed by a rapid transfer during nuclear 
fusion. The initial time of transfer during nuclear fusion was determined 
from the intersection of the slopes of the slow and rapid phases, inter-
polating between time points when necessary. mCherry and RFP transfer 
typically occurred in a single phase of rapid transfer, with little or no 
signal in the recipient nucleus before the transfer. Therefore, the initial 
period of transfer was taken from the intersection of the slope with the 
x intercept.

FRAP
FRAP analysis on 3XGFP-HDEL and Pap1-GFP was performed using a 
confocal system (LSM510; Carl Zeiss, Inc.) housed in the Microscopy 
Core Facility of Princeton University (Department of Molecular Biology). 
Five prebleach images were collected followed by a four to six iteration 
photobleach and immediate collection of 45 postbleach images (30–100 ms 
apart depending on the experiment). 3XGFP-HDEL was bleached us-
ing 488- and 514-nm laser lines at 95% power with the bleach set at 
100%. Pap1-GFP was bleached using the 488-nm laser line at 95% 
power with the bleach set at 80%. The half-time of recovery was deter-
mined using a MATLAB program written by T. Gregor (Princeton Univer-
sity, Princeton, NJ). The mean recovery for Pap1-GFP and 3XGFP-HDEL 
(97% and 96%, respectively) was determined by measuring the frac-
tion of total nuclear fl uorescence in the ROI before and after the photo-
bleach. For example, in the experiment shown in Fig. 6 B, the total 
nu clear fl uorescence at t = 0 was �4,000 U, which was reduced to 
�2,200 U by bleaching. The total fl uorescence of the ROI was �1,100 U 
before the bleaching, which recovered to �600 U. Thus, the ROI con-
tained �27.5% of the total nuclear fl uorescence before the bleach and 
�27.3% of the  total nuclear fl uorescence after recovery, indicating nearly 
100% recovery.

Online supplemental material
Videos show slices through a tomogram (Video 1), a 3D model of a wild-
type zygote (Video 2), and transfer of 3X-GFP-HDEL during nuclear fusion in 

live cells (Video 3). Table S1 lists all tomographic reconstructions ordered 
by stage. Online supplemental material is available at http://www.jcb.org/
cgi/content/full/jcb.200706151/DC1.
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