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    Introduction 
 In mammals, there are three homologues of  Drosophila mela-
nogaster  HP1, termed HP1- � , HP1- � , and HP1- �  ( Jones et al., 

2000 ). They share a high degree of sequence similarity and 

localize, to a lesser or greater extent, to constitutive heterochro-

matin: HP1- �  and HP1- �  are usually found enriched at sites of 

constitutive heterochromatin, whereas HP1- �  has a more uni-

form distribution ( Dialynas et al., 2007 ). All three proteins are 

comprised of an N-terminal chromodomain (CD), an interven-

ing  “ hinge ”  region, and a C-terminal chromoshadow domain 

(CSD) that dimerizes to form a hydrophobic pocket that can ac-

commodate a pentapeptide sequence, PxVxL, found in several 

HP1-interacting partners ( Thiru et al., 2004 ). Of the three pro-

teins, HP1- �  is the most studied. 

 HP1- �  localizes to constitutive heterochromatin through a 

variety of interactions with chromatin. One involves a dynamic 

interaction (association constant in the micromolar range) of the 

HP1- �  CD with Me(3)K9H3 that results from the enzymatic 

activities of KMT1A/B ( Rea et al., 2000 ;  Cheutin et al., 2003 ; 

 Festenstein et al., 2003 ). In cells taken from double-null  KMT1A/B  

mutant mice, which are viable albeit runted ( Peters et al., 2001 ), 

the enrichment of both Me(3)K9H3 and Me(3)K20H4 at centro-

meric heterochromatin is lost, and HP1 proteins appear homoge-

neously distributed throughout both the eu- and heterochromatin 

( Kourmouli et al., 2004 ,  2005 ;  Schotta et al., 2004 ). Structural 

H
P1 proteins are thought to be modulators of chro-

matin organization in all mammals, yet their ex-

act physiological function remains unknown. In a 

fi rst attempt to elucidate the function of these proteins 

in vivo, we disrupted the murine  Cbx1  gene, which encodes 

the HP1- �  isotype, and show that the  Cbx1  � / �   -null muta-

tion leads to perinatal lethality. The newborn mice suc-

cumbed to acute respiratory failure, whose likely cause 

is the defective development of neuromuscular junctions 

within the endplate of the diaphragm. We also observe 

aberrant cerebral cortex development in  Cbx1  � / �    mutant 

brains, which have reduced proliferation of neuronal pre-

cursors, widespread cell death, and edema. In vitro cul-

tures of neurospheres from  Cbx1  � / �    mutant brains reveal 

a dramatic genomic instability. Our results demonstrate 

that HP1 proteins are not functionally redundant and that 

they are likely to regulate lineage-specifi c changes in hetero-

chromatin organization.

 HP1- �  is required for development of the cerebral 
neocortex and neuromuscular junctions 
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ence between hCD2 expression in the  Cbx1   � / �   animals and the 

parental genotypes (P  <  0.001). The difference between  Cbx1  +/ �   

and  Cbx1  +/+  is not signifi cant. These data confi rm that HP1- �  can 

regulate heterochromatin-mediated gene silencing in vivo but that 

the sensitivity of hCD2 expression to  Cbx1  gene dosage is coarse 

because only when both copies of  Cbx1  are mutated is there a 

signifi cant reduction in hCD2 repression ( Fig. 1 D ). 

 The coarse sensitivity of hCD2 variegation to  Cbx1  gene 

dosage contrasts with the situation in  Drosophila , in which loss of 

a single copy of the  HP1  gene by introduction of the  Suvar205  

mutation into fl ies that variegate for  white  signifi cantly reduces re-

pression ( Eissenberg et al., 1990 ). This apparent species-specifi c 

difference in the sensitivity of PEV to gene dosage might be ex-

plained by the so-called mass action model of PEV ( Locke et al., 

1988 ). In this model, changes in the dosage of genes whose prod-

ucts are incorporated as tetramers (or higher order oligomers) have 

a much greater effect on heterochromatin formation (and thus re-

pression) than genes whose products are incorporated monomers 

or dimers into heterochromatin. Given the coarse sensitivity of 

hCD2 variegation to  Cbx1  gene dosage ( Fig. 1 D ), we suggest that 

HP1- �  is incorporated into the mammalian heterochromatin in a 

dimeric form. This would be consistent with structural evidence, 

which shows that HP1- �  forms stable dimers through CSD – CSD 

interactions ( Thiru et al., 2004 ), and with a kinetic model based on 

FRAP analysis, which indicates that swi6p (the fi ssion yeast HP1) 

is incorporated into yeast heterochromatin through one-to-one 

homotypic interactions ( Cheutin et al., 2004 ). The fi ne sensitivity 

of  Drosophila white  variegation to  HP1  gene dosage ( Eissenberg 

et al., 1990 ) might refl ect incorporation of the  Drosophila  HP1 

protein into heterochromatin as higher order oligomers. Thus, al-

though certain structural components of heterochromatin (proteins 

or RNAi) may be conserved across species, their stoichiometry 

during heterochromatin formation might be species dependent. 

  Cbx1  � / �    neonates exhibited no gross morphological abnor-

malities in the major organs. However, we observed that the lung 

alveoli remained collapsed after birth, indicating that perinatal 

death was a result of respiratory failure ( Fig. 2 A ). [ID]FIG2[/ID]  This suggested 

a defect in neuromuscular function. Whole mount staining of E19 

diaphragms ( Fig. 2 B ) using antibodies to neurofi lament (NF) to 

stain axons and  � -bungarotoxin to stain postsynaptic acetylcho-

line receptors (AChRs) revealed that axonal growth is unaffected 

in  Cbx1  � / �    animals, although there is sometimes a reduction in the 

amount of branching ( Fig. 2 B , bottom). However, in  Cbx1  � / �    dia-

phragms, we observed a signifi cant reduction in the number of 

AChR clusters per micrometer of nerve (P  <  0.004; Table S1, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200804041/DC1), 

indicating that the likely proximate cause of death is the inability 

of the diaphragm to respond to the activating signals from the intra-

muscular nerve. The staining of thigh muscle revealed a similar 

decrease in AChR clustering (P  <  0.001; Table S1), indicating that 

the  Cbx1  � / �    mutation has a widespread effect on neuromuscular 

development in mutant embryos. 

 The defect in neuromuscular development prompted us to 

examine other neuronal structures, such as the developing cerebral 

cortex in wild-type and  Cbx1  � / �    embryos. The staining of devel-

oping neocortices at days E17 ( Fig. 3, A, B, E, and F ) and E19 

( Fig. 3, C, D, G, and H ) with a marker of postmitotic neurons, 

analysis of the HP1- �  CD – Me(3)K9H3 interaction reveals that 

the histone tail inserts as a  �  strand, completing the  � -sandwich 

architecture of the HP1- �  CD ( Nielsen et al., 2001 ). The binding 

of HP1- �  to Me(3)K9H3 is part of an epigenetic pathway in 

mammals: HP1- �  bound to Me(3)K9H3 acts as an adapter to re-

cruit KMT5B/C methyltransferases that trimethylate lysine 20 

on histone H4 ( Kourmouli et al., 2004 ,  2005 ;  Schotta et al., 

2004 ). The pathway from Me(3)K9H3 to Me(3)K20H4 via HP1 

is thought to be important for the assembly of HP1-containing 

constitutive heterochromatin ( Kourmouli et al., 2004 ,  2005 ; 

 Schotta et al., 2004 ). A second mode of interaction is the binding 

of the HP1- �  CD with the histone fold domain of histone H3 

( Nielsen et al., 2001 ). This binding is of high affi nity (in the 

nanomolar range; resistant to 0.6 M of salt) and is thought to 

represent the immobile HP1- �  fraction ( � 5%) in heterochro-

matin observed in FRAP experiments ( Nielsen et al., 2001 ; 

 Schmiedeberg et al., 2004 ;  Dialynas et al., 2006 ). An interaction 

of HP1- �  with methylated K26 histone H1.4 has also been shown 

( Daujat et al., 2005 ), although its signifi cance is not known. 

 As part of constitutive heterochromatin, HP1 homologues 

are found at both the centromeres and telomeres of nearly all 

eukaryotic chromosomes, and the proper maintenance of these 

chromosomal regions is critical for genome integrity ( Fanti and 

Pimpinelli, 2008 ). Mammalian HP1 proteins found at pericen-

tric heterochromatin have been implicated in recruiting both the 

cohesin complex and kinetochore proteins that are necessary for 

chromosome segregation at mitosis and the avoidance of an-

euploidy ( Nonaka et al., 2001 ;  Zhang et al., 2007 ). The over-

expression of HP1- �  in human cells results in reduced association 

of human telomerase reverse transcriptase with the telomere 

and a higher frequency of end to end chromosomal fusions, in-

dicating that the concentration of HP1- �  in the nucleus can 

affect telomere function ( Sharma et al., 2003 ). 

 In this study, we show that the mammalian  Cbx1  gene, 

which encodes HP1- � , is essential for viability; thus, the HP1 

isoforms are not functionally redundant. The loss of HP1- �  

protein leads to defective neuromuscular and cerebral cortex 

development. The defect in the latter is likely to be the result of 

a dramatic increase in genomic instability. 

 Results and discussion 
 We disrupted the  Cbx1  gene using standard techniques ( Fig. 1, 

A – C ). [ID]FIG1[/ID]  Crosses between  Cbx1  +/ �   heterozygotes, which were 

indistinguishable from wild-type littermates, revealed that embry-

onic day 19 (E19)  Cbx1   � / �   embryos were signifi cantly smaller 

than their  Cbx1  +/ �   and wild-type littermates ( Fig. 1 C ). The 

 Cbx1   � / �   homozygotes died at, or a few hours after, birth. 

HP1- �  was not detected in  Cbx1   � / �   nuclear extracts using specifi c 

antibodies to either the N or C terminus of HP1- �  (see Fig. 3 I 

and Fig. S1, available at http://www.jcb.org/cgi/content/full/

jcb.200804041/DC1). For initial characterization, we tested 

whether the  Cbx1  mutation was a modifi er of position-effect 

variegation (PEV) by introducing the mutation into mice hetero-

zygous for the hCD2-1.3B variegating transgene located within 

centromeric constitutive heterochromatin ( Festenstein et al., 

1999 ). As shown in  Fig. 1 D , there is a highly signifi cant differ-
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with NeuN and formed a distinct boundary between the cortical 

plate (CP) and the intermediate zone, but in E17  Cbx1  � / �    brains, 

SP neurons were very weakly stained ( Fig. 3 , compare  E  with  F ). 

neuronal nuclei (NeuN), showed clear differences between wild-

type and  Cbx1  � / �    neocortices. [ID]FIG3[/ID]  Specifi cally, we observed that sub-

plate (SP) neurons of the E17 wild-type neocortex were stained 

 Figure 1.     Cbx1  gene function is essential, and its product, HP1- � , is a modifi er of PEV.  (A) The relevant regions in the wild-type  Cbx1  locus (top; see 
Materials and methods), the TK- Neo r   targeting vector (middle), and the targeted gene (bottom). Coding regions are depicted by closed boxes. Noncoding 
regions are denoted by striped boxes. The DNA probe used to screen for targeting events is shown as a shaded rectangle. (B) Southern blot authentication 
of germline transmission of the  Cbx1  mutation. BamHI digest of genomic DNA produces an 11.6-kb fragment for the wild-type (wt) allele and a diagnostic 
5.3-kb fragment for the targeted allele. (C) Images of wild-type (left) and  Cbx1   � / �   (right) neonates. (D) Scatter plots showing the results of fl ow cytometry 
analysis of the proportion of transgenic embryonic DP (CD4 + CD8 + ) thymocytes that express hCD2 taken from the three  Cbx1  genotypes. Each point repre-
sents the result from a single embryo. The mean expression of hCD2 in embryonic thymocytes from  Cbx1  +/ �   animals is higher than that for  Cbx1  +/+  animals, 
but not signifi cantly. The mean expression of hCD2 in thymocytes taken from  Cbx1   � / �   animals is signifi cantly different from expression in thymocytes taken 
from the parental genotypes (P  <  0.001). Black lines represent the means.   
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bution of HP1- �  and HP1- �  were also unchanged in  Cbx1   � / �   

brains ( Fig. 3 I  and Fig. S2, available at http://www.jcb.org/cgi/

content/full/jcb.200804041/DC1). 

 The loss of NeuN staining in postmitotic neurons is thought 

to be a marker of cell death, where the loss of NeuN staining is 

At E19, the prominent NeuN staining of CP neurons in wild-

type brains is absent in CP neurons of  Cbx1  � / �    E19 brains 

( Fig. 3 , compare  G  with  H ). The amount and heterochromatic 

localization of Me(3)K9H3 and Me(3)K20H4 were unchanged 

in  Cbx1   � / �   brains ( Fig. 3, I – K ). Similarly, the amount and distri-

 Figure 2.     Cbx1  � / �    neonates do not infl ate their lungs, and E19 
 Cbx1   � / �   embryos exhibit reduced clusters of postsynaptic AChRs 
within diaphragm muscle.  (A) Hematoxylin and eosin – stained 
transverse sections through the midbody of wild-type (left) and 
 Cbx1  � / �    (right) neonates showing lack of infl ation of the lungs 
in the  Cbx1  � / �    neonates. Al, alveolus; Br, bronchiole; IM, inter-
costal muscle; Lu, lung; SC, spinal cord. Bars: (top) 450  μ m; 
(middle) 150  μ m; (bottom) 50  μ m. (B) Staining of E19 wild-type 
diaphragms (top) with antibodies to NF (red) shows that the dia-
phragm is clearly innervated. Bungarotoxin-positive (BGX; green) 
AChRs are clustered around the nerve and its branches. The clus-
ters of bungarotoxin-positive AChRs are much reduced in E19 
 Cbx1   � / �   diaphragms (middle and bottom), and, in some cases, 
the branching of the innervating nerve is also reduced (bottom; 
see red NF staining). Bar, 25  μ m.   
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death; Western blot analysis confi rmed that NeuN protein levels 

in  Cbx1  � / �    E19 neocortices were the same as in the wild type 

( Fig. 3 I ). We undertook an examination of the integrity of cortical 

lamination using Nissl staining of semithin sections of neocortex. 

the result of a loss in antigenicity rather than absolute protein 

levels ( Kuan et al., 2004 ;  Unal-Cevik et al., 2004 ;  Collombet 

et al., 2006 ). Therefore, we explored the possibility that the loss of 

NeuN staining in the  Cbx1  � / �    brains might be caused by cell 

 Figure 3.    Immunohistochemical and Western blot analysis of  Cbx1  � / �    brains.  (A – D) Hematoxylin and eosin – stained sagittal sections of E17 (A and B) 
and E19 (C and D) neocortices correspond to the antibody-stained cortices in E – H. Genotypes of the embryos are marked above the photographs. 
(E – H)  � -NeuN – stained E17 and E19 neocortices. The staining of the wild-type E17 cortex with the  � -NeuN antibody (E) detects a layer of SP cells that 
separates the CP from the intermediate zone (IZ). These cells are very weakly stained in the  Cbx1  � / �    neocortex (F). Similarly, CP cells are strongly stained 
with the  � -NeuN antibody in the E19 neocortex (G), but such staining of CP cells is reduced to background levels in the E19  Cbx1  � / �    neocortex (H). MZ, 
marginal zone. (I) HP1- �  protein is not detected in extracts from  Cbx1   � / �   brains using an antibody to the C terminus of HP1- � ; an N-terminal antibody 
also fails to detect HP1- �  in the same way (Fig. S1, available at http://www.jcb.org/cgi/content/full/jcb.200804041/DC1). The levels of HP1- � , HP1- � , 
Me(3)K9H3, Me(3)K20H4, and NeuN are not signifi cantly changed in  Cbx1   � / �   compared with wild-type brain extracts. The bottom panel is the actin-loading 
control. Identical results were obtained using whole embryo extracts (not depicted). (J) Me(3)K9H3 heterochromatic distribution is not affected by the  Cbx1  � / �    
mutation.  Cbx1  � / �    and  Cbx1 +/+   CP neurons show identical Me(3)K9H3 staining patterns. (K) Me(3)K20H4 heterochromatic distribution is not affected by the 
 Cbx1  � / �    mutation.  Cbx1  � / �    and  Cbx1 +/+   CP neurons show identical Me(3)K20H4 staining patterns. Bars: (A – H) 100  μ m; (J and K) 10  μ m.   
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As shown ( Fig. 4 A ), control CPs from E19 wild-type neocorti-

ces had a normal columnar organization, which was partially 

disrupted in E19  Cbx1 +/ �    brains ( Fig. 4 B ). [ID]FIG4[/ID]  In stark contrast, we 

observed gross changes in the columnar organization in  Cbx1  � / �    
neocortices ( Fig. 4, C – E ) that were accompanied by edema-

tous areas ( Fig. 4, C and D , arrows) and clusters of dying or dead 

cells ( Fig. 4 E , arrows). These data indicate a strong effect of 

the  Cbx1  � / �    mutation on both cortical lamination and integ-

rity and also show that  Cbx +/ �    E19 embryos are haploinsuffi -

cient, as they exhibit a partial disruption of laminar organization 

in the developing neocortex, although  Cbx1 +/ �    adults are viable 

and fertile. 

 It is known that cortical neurons are generated from the 

proliferating neuronal stem cell precursors located in the ventric-

ular zone (VZ), which lines the lateral cerebral ventricle ( Rakic, 

1988 ). Postmitotic neurons migrate away from the VZ and form 

the distinct cortical layers in an inside-fi rst, outside-last pattern 

( Desai and McConnell, 2000 ). We examined cell proliferation in 

the VZ by staining E17 and E19 wild-type and  Cbx1  � / �    brains 

for the proliferation marker pKi-67. As shown in  Fig. 4 F , there 

is a clear band of pKi-67 – positive proliferating cells in the VZ in 

both the E17 and E19 wild-type brains. This band of pKi-67 –

 positive cells is reduced in E17  Cbx1  � / �    brains and is almost ab-

sent in E19  Cbx1  � / �    brains, indicating that the proliferative 

capacity of the VZ neuronal stem cell pool is reduced in  Cbx1  � / �    
animals. To gain further insight into the basis of the proliferative 

defect, we generated neurospheres from wild-type,  Cbx1 +/ �   , and 

 Cbx1  � / �    brains. Accordingly, we dissected E19 brains from the 

three genotypes and counted the number of neurospheres that 

develop from the expansion of neural progenitor cells in tissue 

culture. This showed a trend toward fewer numbers of neuro-

spheres from the  Cbx1  � / �    cultures compared with  Cbx1 +/ �    and 

wild-type cultures (P  <  0.04;  Fig. 4 G ), which is consistent with 

the E19 pKi-67 staining data ( Fig. 4 F ). The production of neu-

rospheres from the three genotypes also enabled us to perform 

a cytogenetic analysis. Examination of  Cbx1  � / �    neurospheres 

showed that there is a statistically signifi cant increase in genomic 

instability compared with  Cbx1 +/ �    and wild-type neurospheres 

as measured by increased premature centromere division (PCD; 

P  <  0.001), increased ploidy (P  <  0.001), micronuclei formation 

(P  <  0.001), and, most dramatically, the presence of diplochro-

mosomes ( Fig. 5, A – E ). [ID]FIG5[/ID]   Cbx1 +/ �    neurosphere cells show a mod-

est increase in chromosomal aberrations when compared with 

wild type, but its signifi cance is weak ( Fig. 5 F  and Table S1). 

 Proliferative defects during the differentiation of neuronal 

progenitors have been observed in in vitro  Cbx5  (encoding 

HP1- � ) siRNA experiments, in which knockdown of  Cbx5  gene 

expression results in derepression of E2F-responsive genes and 

 Figure 4.     Cbx1  � / �    mutants exhibit defective cerebral corticogenesis and 
reduced proliferation of neuronal precursors.  (A and B) Nissl staining of 
the E19 wild-type neocortex (A) shows the typical ordered arrangement of 
CP cells. In the E19  Cbx1 +/ �    neocortex (B), the ordered arrangement of CP 
cells is disturbed, and the boundaries at the top and bottom edges of the 
CP layer are blurred. (C – E) In the E19  Cbx1  � / �    neocortex, the lamination 
of the neocortex is severely disturbed with patches of edema (C and D, 
arrows) and clusters of dying cells (E, arrows) scattered through the corti-
cal layers. (F) Proliferating neural progenitors are depleted in the VZ of 
 Cbx1  � / �    brains. On E17, the layer of pKi-67 – positive proliferating neural 
progenitors is thicker in the wild-type VZ compared with the  Cbx1  � / �    VZ. 

On E19, the pool of proliferating progenitors of the  Cbx1  � / �    VZ is essen-
tially exhausted compared with the wild-type E19 VZ. (G) There is a trend 
toward fewer neurospheres from cultures of  Cbx1  � / �    brains compared 
with wild-type and  Cbx1 +/ �    brains (P  <  0.04); each dot represents the 
result from a single embryo. There is no signifi cant difference in the num-
bers of neurospheres from the wild-type and  Cbx1 +/ �    brains. Black lines 
represent the medians. IZ, intermediate zone; MZ, marginal zone. Bars: 
(A – E) 60  μ m; (F) 80  μ m.   

 

D
ow

nloaded from
 http://jcb.rupress.org/jcb/article-pdf/183/4/597/1554702/jcb_200804041.pdf by guest on 24 April 2024



603 HPI- �    REGULATES   BRAIN   DEVELOPMENT   • Aucott et al. 

HP1-containing heterochromatin ( Zhang et al., 2007 ); under-

condensation of centromeric heterochromatin can lead to the 

exclusion of chromosomes into micronuclei ( Guttenbach and 

Schmid, 1994 ); and diplochromosomes can result from ineffi -

cient deconcatenation of centromeric DNA at the end of mi-

tosis, leading to an extra round of DNA replication without 

chromatid separation ( Sumner, 1998 ). 

 It is a matter of speculation as to how the loss of HP1- �  

could affect the heterochromatin assembly/organization in  Cbx1  � / �    
cortical neurons. First, it is possible that the loss of HP1- �  could 

result in the misregulation of a critical HP1- �  – regulated gene 

that is required for heterochromatin formation/assembly in neu-

rons; HP1 proteins are known to regulate transcription both 

positively and negatively ( Fanti and Pimpinelli, 2008 ). Second, 

it is possible that the defect is structural. According to a cur-

rent model, the HP1- �  – Me(3)K9H3 interaction is weakened 

by S10-H3 phosphorylation at metaphase, leading to a release 

the initiation of abnormal cell cycles that can lead to cell death 

( Panteleeva et al., 2007 ). It is unlikely that changes in  Cbx5  

gene expression contribute to the  Cbx1  � / �    phenotype reported 

here ( Figs. 2 – 5 ) because (a) HP1- �  protein levels and distribu-

tion are not signifi cantly changed in  Cbx1  � / �    brain extracts 

( Fig. 3 I , Fig. S2, and not depicted), and (b)  Cbx5  � / �   -null 

mutants are viable and fertile and exhibit no overt neuronal 

phenotype (not depicted). Rather than the derepression of cell 

cycle – promoting genes, we suggest that the reduced prolifera-

tion and cell death phenotype in  Cbx1  � / �    cortices is caused by 

a severe genomic instability that is the result of an improper 

constitutive heterochromatin assembly/organization in  Cbx1  � / �    
cortical neurons. The observed chromosomal aberrations ( Fig. 5, 

A – E ) are all consistent with this view. PCD has been observed in 

the swi6p (fi ssion yeast HP1 homologue) mutant ( Nonaka et al., 

2001 ); polyploidy can result from defective kinetochore as-

sembly ( Storchov á  et al., 2006 ), which requires a platform of 

 Figure 5.     Cbx1  � / �    neurospheres exhibit an increased 
genomic instability.  (A) A mitotic chromosome spread 
showing the normal situation in which sister chromatids 
are paired. (B – E) Chromosomes from the  Cbx1  � / �    neu-
rosphere cells exhibit a variety of aberrations, includ-
ing unpaired sister chromatids that have undergone 
PCD (B, arrow), increased ploidy (C), diplochromo-
somes (D, arrow), and micronuclei (E). Telomeres (red 
signals) in all panels were labeled by a specifi c PNA 
probe. (F) The table shows that there is a highly sig-
nifi cant increase (P  <  0.001) in PCD, polyploidy, dip-
lochromosomes, and micronuclei between  Cbx1  � / �    
and the other two genotypes ( Cbx1 +/ �    and  Cbx1 +/+  ). 
There is only a borderline signifi cant difference be-
tween  Cbx1 +/ �    and  Cbx1 +/+  . Bars, 5  μ m.   
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percentage of hCD2-positive cells, marker regions were set. The percentage 
of hCD2 expression in CD4/CD8 DP cells from each sample was compiled 
in a table and displayed as a graph sorted in accordance with the geno-
type of the sample ( Fig. 1 D ). 

 Histology 
 Whole embryos or brains embedded in paraffi n blocks were sectioned to 
7  μ m and mounted on SuperFrost Plus slides (Menzel-Gl ä ser). Hematoxylin 
and eosin staining were performed according to standard procedure. 

 Whole mount immunohistochemistry analyses 
 E19 dissected thigh muscle and diaphragms were fi xed in 2% PFA at 4 ° C 
overnight, rinsed briefl y with PBS, and incubated in 0.1 M glycine/PBS for 
1 h followed by permeabilization in 0.5% Triton X-100/PBS. Tissues were 
blocked in 10% normal goat serum for 2 h and incubated with primary 
rabbit antibodies against the light chain of NF (1:200; Millipore) in anti-
body dilute (Dako) overnight at 4 ° C. After extensive washing, the tissues 
were incubated with TRITC-conjugated swine anti – rabbit IgG (1:200; 
Dako) plus 5 ng/ μ l AlexaFluor-488 – conjugated bungarotoxin (Invitrogen) 
overnight at 4 ° C. Tissues were then washed four times for 30 min each 
with 0.5% Triton X-100/PBS, postfi xed in 1% PFA, and mounted in mount-
ing medium (Vector Laboratories). 

 Immunostaining of cryosections of optimal cutting 
temperature – embedded brains 
 Optimal cutting temperature – embedded brains were sectioned at 14 – 16 
 μ m. The brains were then fi xed in 4% PFA for 30 min and blocked in 10% 
normal goat serum. The primary antibodies used were rat  �  – HP1- �  (MAC 
353; 1:50; recognizes the C terminus of HP1- � ;  Wreggett et al., 1994 ) 
and mouse  � -NeuN (1:200; Millipore); FITC, fl uorescein, or TRITC-conju-
gated secondary antibodies (Dako) were used to visualize the primary 
antibody staining. For detection of Me(3)K9H3 and Me(3)K20H4, we 
used the protocol described in  Scholzen et al. (2002) . Rabbit antibodies 
(Me[3]K9H3 and Me[3]K20H4) were detected with an AlexaFluor-488 –
 coupled goat anti – rabbit secondary antibody (Invitrogen). The rat  �  – HP1- �  
( Wreggett et al., 1994 ) antibody was detected with an AlexaFluor-546 –
 coupled goat anti – rat secondary antibody (Invitrogen). 

 Western blotting of mouse brains 
 Murine embryonic fi broblast (MEF) cell extracts were prepared according 
to  Cowell et al. (2002) . E19 wild-type and  Cbx1  � / �    brains were lysed in 
Laemmli buffer. The extracts were analyzed in 12.5 or 7.5% SDS-PAGE, 
transferred to nitrocellulose, and probed with the antibodies according to 
standard procedures ( Cowell et al., 2002 ). The antibody to the N terminus 
of HP1- �  was used at a concentration of 1:100 and was a gift from 
E. Chan (University of Florida Health Science Center, Gainesville, FL). 

 Nissl staining of E19 brains 
 Embryos were perfused via the left ventricle of the heart with 1 – 2 ml of a 
9% NaCl solution containing 0.5% heparin and 0.0266% NaNO 2 . Sub-
sequently, 20 ml of a 0.1-M Na-cacodylate buffer, pH 7.3, 4% PFA, 2.5% 
glutaraldehyde, and 1% saccharose were perfused. Heads were postfi xed 
in the same fi xative for 3 h at room temperature, and brains were removed, 
stored overnight in freshly prepared fi xative at 4 ° C, and fi nally transferred 
to 0.1-M Na-cacodylate buffer containing 15% saccharose for 2 h. Pieces 
of occipital cortices of both sides were postfi xed in 2% OsO 4 , dehydrated, 
and embedded in epoxy resin. The staining of semithin sections was per-
formed according to  Richardson (1966) . Before perfusion, the yolk sac 
was removed for DNA extraction and genotyping. 

 Neurosphere culture and generation of chromosome spreads 
from neurospheres 
 Neurosphere cultures from E19 embryo brains and the production of 
chromosomes from the neurospheres were performed according to  Frappart 
et al. (2005) . 

 Chromosome experiments and detection of telomeres 
 Detection of telomeres on metaphase chromosomes was obtained by FISH 
by using a Cy3-labeled telomere sequence-specifi c peptide nucleic acid 
(PNA) probe ( Sharma et al., 2003 ). Giemsa-stained chromosomes of meta-
phase spreads were analyzed for chromosome aberrations ( Fig. 5 F ). 
 Cbx1  � / �    and wild-type MEFs were generated according to the 3T9 proto-
col of  Kamijo et al. (1997) . Unfi xed metaphase chromosomes from the 
MEFs were stained with anti – HP1- �  and  – HP1- �  antibodies according to 
 Wreggett et al. (1994) . 

of much of the Me(3)K9H3-bound HP1- �  into the nucleoplasm 

( Fischle et al., 2005 ). However, it is possible that an immobile 

fraction of HP1- �  bound to the H3 histone fold ( Dialynas et al., 

2006 ) still remains associated with the constitutive heterochro-

matin, and it is the loss of this immobile fraction that leads to 

the dramatic genomic instability seen in  Cbx1   � / �   cortical neu-

rons. We favor the latter because the  Cbx1   � / �   phenotype is more 

severe than the viable double-null  KMT1A/B  compound muta-

tion in which the dynamic histone tail – HP1 interactions within 

constitutive heterochromatin are disrupted ( Peters et al., 2001 ; 

 Kourmouli et al., 2004 ). This possibility is further supported by 

the observation that the overall Me(3)K9H3 and Me(3)K20H4 

levels and distribution are unchanged in  Cbx1   � / �   neurons ( Fig. 3, 

I – K ), although we cannot exclude the possibility that critical 

sites might be affected. Future work will be directed toward 

exploring the role of HP1- �  in regulating the heterochromatin 

structure in developing/migrating neurons during cerebral neo-

cortex development. 

 Materials and methods 
 Targeted disruption of the  Cbx1  gene and generation of  Cbx1   � / �   mice 
 The targeting vector was constructed from the XhoI – HindIII genomic frag-
ment of  Cbx1  (for a schematic diagram see  Fig. 1 A ; http://www
.ensembl.org/Mus_musculus/geneview?gene=ENSMUSG00000018666). 
For ease of construction, the  TK - Neo r   gene was inserted into a unique SmaI 
site found in exon 4 of the  Cbx1  gene ( Fig. 1 A ). Exon 4 gives rise to bases 
320 – 413 of the  Cbx1  mRNA (A of AUG given as 1) encoding amino 
acids 108 – 137 of HP1- � , which lies adjacent to the C terminus of the CD 
( Ball et al., 1997 ). The targeting of  Cbx1  with the construct was detected 
using a 0.3-kb probe from the HP1- �  cDNA ( Fig. 1 A , shaded boxes). After 
the digestion of genomic DNA by BamHI, this probe produces a fragment 
of 11.6 kb for the wild-type allele and 5.3 kb for the targeted allele (be-
cause of the introduction of a BamHI site in the  Neo r   gene). Blastocyst injec-
tions for the production of germline chimeras and Southern blotting were 
performed according to standard protocols ( Hogan et al., 1994 ). 

 Determination of the effect of  Cbx1  gene dosage on hCD2 variegation 
 The hCD2-1.3B transgene contains the hCD2 promoter driving an hCD2 
minigene and 1.3-kb 3 �  fl anking sequences with a partial locus control re-
gion (LCR); i.e., the LCR includes hCD2 DHS1 and DHS2 but lacks DHS3, 
a site that is essential for full position-independent LCR function and avoid-
ance of PEV. When integrated into pericentric heterochromatin, the trans-
gene variegates ( Festenstein et al., 1999 ). To avoid background effects, 
heterozygous  Cbx1  +/ �   mice were backcrossed onto the CBA mouse strain 
background (more than nine backcrosses). Because homozygous  Cbx1   � / �   
mice die around birth, we set up timed matings to obtain homozygous em-
bryos with the hCD2 transgene at days 17 – 19 of embryonic development. 
Accordingly, we set up the following cross: mice heterozygous for  Cbx1  
and hemizygous for hCD2 ( Cbx1  +/ �   and hCD2 + ) were mated with mice 
heterozygous for  Cbx1  ( Cbx1  +/ �  ). Day 17 – 19 embryos resulting from this 
cross were genotyped for the  Cbx1  mutation by Southern blot analysis 
( Fig. 1 B ), whereas the presence of the hCD2-1.3B transgene was deter-
mined by measuring hCD2 expression using FACS. 

 We measured hCD2 expression in CD4/CD8 double-positive (DP) 
embryonic thymocytes. Single-cell suspensions were prepared from embry-
onic thymus and stained for FACS analysis. 10 6  embryonic thymocytes 
were stained with the following antibody combinations: (a) FITC-conju-
gated anti-hCD2 (BD), allophycocyanin-conjugated anti-mCD4 (BD), and 
peridinin-chlorophyll protein complex – conjugated anti-mCD8 (BD) or 
(b) FITC-conjugated anti-hCD2 (BD), phycoerythrin-conjugated anti-mCD4 
(BD), and tricolor-conjugated anti-mCD8 (BD). Three-color FACS analysis 
was performed on a laser instrument (FACS Calibur; BD) and analyzed us-
ing CellQuest software (BD). Live cells were then gated in a ferric-sorbitol-
citrate/SSC dot blot, and this gate was used to display CD4 and CD8 
expression in a dot blot. Gates for the different populations (double nega-
tive, CD4 positive, CD4/CD8 DP, and CD8 positive) were set, and hCD2 
expression in each population was displayed as a histogram. To obtain the 
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For  Fig. 3 (J and K) , samples were mounted in Dabco solution (0.25% 1,4-
diazabicyclo[2.2.2]octane [Sigma-Aldrich], 15 mM NaCl, 0.8 mM 
Na 2 HPO 4 , and 0.2 mM KH 2 PO 4  in 90% [vol/vol] glycerin, pH 8.6). 

 Fluorochromes.   In  Figs. 2 B ,  3 (E – H) , and  4 F , the fl uorochromes used 
were either FITC- or TRITC-conjugated antibodies or AlexaFluor-488 – conju-
gated bungarotoxin. In  Fig. 3 (J and K) , AlexaFluor-488 (displayed in green) 
or AlexaFluor-546 (displayed in red) was used. For  Fig. 5 , the PNA probe was 
labeled with Cy3, and the chromosomes were counterstained with DAPI. 

 Camera make and model.   For  Fig. 2 A , a Progres C14 camera (Jenop-
tik) was used. For  Figs. 2 B ,  3 (A – H) , and  4 (A – F) , a digital camera (C4742-
95; Hamamatsu Photonics) was used. For  Fig. 5 , we used a charge-coupled 
device camera (C332843E; JAI Corporation) with 756  ×  581 pixels, a 
2/3 – in. sensing area, a pixel size of 11  ×  11  μ m, and a signal/noise ratio 
of  > 55 dB. 

 Acquisition software.   For  Fig. 2 A , we used C14 acquisition software 
(Jenoptik). For  Figs. 2 B ,  3 (A – H) , and  4 (A – F) , we used Openlab 3.0.9 
software (PerkinElmer). The acquisition software used for  Fig. 3 (J and K)  
was Leica TCSNT software. For  Fig. 5 , we used in situ imaging system FISH 
imaging software (MetaSystems). 

 Subsequent software used for image processing.   Quantitation of AChRs 
was performed using ImageJ version 1.41i (National Institutes of Health). 
The confocal z series of diaphragms and thigh muscles stained for both NF 
and bungarotoxin were taken on a confocal laser microscope (SP5; Leica) 
using a 20 ×  objective. The number of AChR clusters was calculated in 3D 
z stacks using an ImageJ plug-in 3D Object Counter ( Cordelires and Jackson, 
2007 ) after background subtraction. The lengths of the NF-positive nerves on 
maximum intensity – projected images were calculated by tracing each indi-
vidual nerve using the ImageJ plug-in Neuron J ( Meijering et al., 2004 ). 

 For  Figs. 2 (A and B) ,  3 (A – H) , and  4 (A – F) , the pictures were 
assembled using Photoshop CS2 version 9.0 (Adobe Systems, Inc.) for 
Macintosh. For  Fig. 3 I , pictures of specifi c bands of the indicated anti-
bodies have been assembled. For  Fig. 3 (J and K) , pictures were processed 
and assembled with ImageJ and Photoshop 6.0. For  Fig. 5 , composite images 
were composed using Photoshop 7.0.1, and the input level was adjusted 
to match the black background. 

 Online supplemental material 
 Fig. S1 shows the lack of N- and C-terminal regions of HP1- �  in 
 Cbx1  � / �    brain extracts. Fig. S2 shows the immunolocalization of HP1- �  
and HP1- �  proteins in  Cbx1 +/+   and  Cbx1  � / �    E19 cortical sections. 
Table S1 tabulates the number of AChR clusters/micrometer of nerve in 
diaphragms and thigh muscle taken from E19  Cbx1 +/+   and  Cbx1  � / �    
embryos. Online supplemental material is available at http://www.jcb
.org/cgi/content/full/jcb.200804041/DC1. 
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 AChRs/micrometer of nerve in mutant ( Cbx1   � / �  ) and wild-type ( Cbx1  +/+ ) 
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scope. For  Figs. 2 B ,  3 (A – H) , and  4 (A – F) , we used a Leitz DMRXE micro-
scope. For  Fig. 3 (J and K) , we used a confocal scanning microscope 
(TCS-SP; Leica). For  Fig. 5 , we used a motorized microscope (Axioplan 2ie; 
Carl Zeiss, Inc.). 

 Type, magnifi cation, and NA of the objective lenses.   For  Fig. 2 A , we 
used a PL Fluotar 10 ×  NA 0.30 objective (Leitz). For  Figs. 2 B ,  3 (A – H, J, 
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