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Introduction
Spinal muscular atrophy (SMA) is an inherited neurodegenera­
tive disease causing progressive deterioration of motor func­
tions and loss of motor neurons (Azzouz et al., 2004). After 
cystic fibrosis, SMA is the most common autosomal recessive 
disorder in humans with an incidence of 1 in 6,000 and defines 
the most common genetic cause of infant mortality. SMA is 
caused by the loss of Survival Motor Neuron (SMN1), a ubiq­
uitously expressed gene that encodes a key component of the 
SMN complex, which is essential for snRNP biogenesis. Bio­
chemical studies established that SMN mediates the accuracy 
of interactions between RNA binding proteins and their target 
snRNAs in the cytoplasm (Massenet et al., 2002; Meister et al., 
2002; Paushkin et al., 2002; Wan et al., 2005; Battle et al., 2006; 
Eggert et al., 2006; Zhang et al., 2008).

The human genome harbors two homologous, nearly 
identical genes encoding SMN, SMN1, and SMN2. However, 
under normal conditions, SMN1 accounts for 90% of cellular 
SMN expression due to a splicing mutation in SMN2 that results 
in the production of only a small fraction (10%) of full-length 
functional SMN (Lefebvre et al., 1997; Wolstencroft et al., 2005). 

Thus, though SMA is caused by mutations that impair SMN1 
function, the severity of the disease is modulated by SMN2 
copy number, which varies in the human population (McAndrew 
et al., 1997). As SMN2 copy number increases, the amount  
of full-length SMN protein also increases, rendering loss of 
SMN1 less pathogenic. Therefore, cellular processes as well 
as single genes capable of augmenting SMN protein activity 
may be therapeutically relevant. To identify such processes/
targets and gain insights into fundamental aspects of SMA, 
several different organisms, including Drosophila, are currently 
being used to model this disease (Schrank et al., 1997; Miguel-
Aliaga et al., 1999, 2000; Frugier et al., 2000; Hannus et al., 
2000; Hsieh-Li et al., 2000; Monani et al., 2000; Owen et al., 2000; 
Paushkin et al., 2000; Chan et al., 2003; McWhorter et al., 2003; 
Rajendra et al., 2007; Chang et al., 2008; Briese et al., 2009; Kong 
et al., 2009).

The Drosophila genome encodes a single orthologue of 
SMN, the Survival motor neuron (Smn) protein, which is ubiq­
uitously expressed and localizes to nuclear gems (Chan et al., 
2003; Liu et al., 2006; Chang et al., 2008), similar to the distribu­
tion observed in vertebrates (Monani, 2005). In Drosophila, Smn 
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results confirm btl as a bona fide modifier of Smn loss-of-function 
mutations, thereby validating our initial observations.

If, as the above analysis of btl implies, FGF signaling can 
modulate Smn activity, we expect other genetic elements of the 
FGF pathway to behave as Smn modifiers as well. We chose to 
examine this relationship in the mesoderm, as the activity of the 
FGF signaling pathway has been shown to be important for the 
development and the maintenance of muscles (Shishido et al., 
1993; Beiman et al., 1996; Gisselbrecht et al., 1996; Michelson 
et al., 1998; Vincent et al., 1998; Schulz and Gajewski, 1999; 
Stathopoulos et al., 2004). The mesoderm-specific how24BGAL4 
driver was used to control expression of inducible RNAi trans­
genes that specifically target either of the two Drosophila FGF 
receptors, btl or heartless (htl), and a specific FGF signaling 
effector, stumps. We monitored the effects of these mutations on 
two additional Smn RNAi strains, UAS-Smn-RNAiC24 (C24) and 
UAS-Smn-RNAiN4 (N4), which, based on phenotypic analyses 
and Smn expression levels, are of increasing allelic strength with 
respect to the FL26B allele (Chang et al., 2008).

In control experiments, we observe an Smn-independent 
effect on viability in backgrounds in which Btl, Htl, or Stumps 
expression were reduced, whereas no effect on viability was ob­
served upon removal of one copy of sprouty (sty), an inhibitor of 
the pathway (Fig. 1, B and C). However, when Smn activity is 
reduced in each of these backgrounds, a further decrease in via­
bility is detected (Fig. 1, B and C). Moreover, loss of function 
for the FGF pathway antagonist sty suppresses Smn-induced le­
thality (Fig. 1 C). Based on these observations, we conclude that 
a genetic link between Smn activity and the FGF signaling cas­
cade exists in the mesoderm.

Reduction of FGF signaling in muscles 
causes NMJ defects
Previous analyses established that the vast majority of mutations 
in genes that altered the viability of Smn loss-of-function muta­
tions (Chang et al., 2008) were also accompanied by structural 
defects in the larval NMJ (Chang et al., 2008). As multiple alleles 
of several FGF signaling elements modify Smn-dependent lethal­
ity, we assessed the significance of this interaction at the third lar­
val instar NMJ in several different genetic backgrounds.

An initial examination of the distribution of Htl revealed 
that it is specifically expressed at the NMJ during the third instar 
(Fig. 2, A–L; and Fig. S2). This expression appears to be primarily 
in the muscle, as it coincides with the postsynaptic marker Discs 
Large 1 (Dlg; Fig. 2 B) and does not obviously overlap with the 
presynaptic marker nc82 (Bruchpilot; Fig. 2 E). This is corrobo­
rated by the localization of additional presynaptic markers, 
Cysteine string protein (Csp; Fig. 2 H) and anti-horseradish per­
oxidase (anti-HRP; Fig. 2 K), which label synaptic vesicles and 
neuronal membranes, respectively, and appear to be distinct from 
Htl expression. Together, these data suggest that Htl is predomi­
nantly postsynaptic, as indeed is Smn.

The presence of the htl ligands, pyramus (pyr) and 
thisbe (ths) at the NMJ would suggest that Htl is active, but 
the localization of the ligands has not been previously de­
scribed. In embryos, it is known that the ligands are expressed 
in the epithelia adjacent to the mesoderm, which expresses htl 

loss-of-function mutations result in reduced viability and de­
creased motility as well as muscular atrophy in the adult thorax, 
phenotypes analogous to the human pathology (Chan et al., 2003; 
Rajendra et al., 2007; Chang et al., 2008). Moreover, neuro­
muscular junction (NMJ) defects are associated with both verte­
brate and invertebrate models (Chan et al., 2003; Chang et al., 
2008; Kariya et al., 2008). In addition to its canonical subcellular 
distribution, Smn is also clearly concentrated in the postsynaptic 
region of the larval NMJ (Chang et al., 2008) and has been re­
ported to localize to sarcomeres of adult myofibrils (Rajendra 
et al., 2007). Despite this, tissue-specific reduction of Smn dem­
onstrates that normal NMJ morphology requires Smn activity in 
both muscles and neurons (Chang et al., 2008). Finally, an obser­
vation of critical importance to the Drosophila model is that the 
morphology and the physiology of the NMJ are sensitive to lev­
els of Smn (Chang et al., 2008; unpublished data), mirroring the 
SMN2 dosage dependence observed in SMA patients.

Taking advantage of the dosage sensitivity of Smn loss-
of-function phenotypes, we performed systematic genetic screens 
to identify modifiers of Smn activity (Chang et al., 2008). Among 
the genes identified in this manner was the breathless locus, 
which encodes one of the two Drosophila FGF receptors (Glazer 
and Shilo, 1991). In general, the FGF pathway has been dem­
onstrated to be involved in a diverse range of cellular and de­
velopmental processes, including proliferation, migration, 
differentiation, and apoptosis (Itoh and Ornitz, 2004; Huang 
and Stern, 2005). In Drosophila, this pathway has been demon­
strated to control the development of the tracheal system (Ghabrial 
et al., 2003) and the musculature (Shishido et al., 1993, 1997; 
Beiman et al., 1996; Gisselbrecht et al., 1996; Michelson  
et al., 1998; Vincent et al., 1998; Schulz and Gajewski, 1999; 
Stathopoulos et al., 2004). In contrast, the role of FGF in the 
Drosophila nervous system remains poorly characterized (García-
Alonso et al., 2000; Forni et al., 2004).

In this study, we investigate the relationship between Smn 
and several components of the FGF pathway, demonstrating a 
clear link between Smn and FGF. Epistasis analysis reveals that 
Smn regulates FGF signaling output, and molecular studies in­
dicate that Smn activity influences FGF receptor transcript 
levels. Furthermore, we show that activation of FGF signaling 
can restore Smn-associated NMJ defects, thus raising the possi­
bility that FGF can act as a protective modifier of SMA.

Results
The FGF signaling pathway and Smn
breathless (btl), which encodes one of the two known Drosoph-
ila FGF receptors, was identified in a genetic screen as a modi­
fier of Smn-dependent lethality (Chang et al., 2008), suggesting 
a connection between the FGF pathway (Fig. 1 A) and Smn. We 
extended this finding by determining the effect of different btl 
mutations on Smn-dependent viability using an inducible RNAi 
allele of Smn, UAS-Smn-RNAiFL26B (FL26B), which displays re­
duced viability when ubiquitously expressed by the tubulinGAL4 
(tubGAL4) driver (Chang et al., 2008). This phenotype was mod­
ified by multiple btl alleles (btlf02864, btldev1, and UAS-btl) as 
judged by our survival assay (Fig. S1, A and B). These genetic 
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To corroborate these observations and ensure that the 
structural defects we observe at the larval NMJ are associated 
with the FGF pathway, we modulated the activities of htl and 
its downstream effectors, stumps (dof) and sprouty (sty) using 
GAL4-inducible transgenic strains to determine whether further 
modifications in FGF signaling result in structural defects at the 
larval NMJ. Muscle-specific expression of sty, a dominant in­
hibitor of the pathway (how24BGAL4:UAS-sty; Fig. 3, C and G; 
and Fig. S3 A), or a transgenic UAS-htl RNAi construct caused 
a similar NMJ phenotype (how24BGAL4:UAS-htl-RNAi; Fig. 3 G 
and Fig. S3 A).

Though overexpression of just htl in muscles had no dis­
cernable impact on NMJ growth (how24BGAL4:UAS-htl; Fig. 3 G 
and Fig. S3 A), expression of stumps, which acts upstream of Ras, 
caused a pronounced synaptic overgrowth and an overelaboration 
of synaptic terminals (how24BGAL4:UAS-stumps; Fig. 3, D and G; 
and Fig. S3 A). Quantification of the number of synaptic boutons, 

(Stathopoulos, et al., 2004). However, because antibodies 
that recognize the ligands are not available, we used qPCR to 
determine that each is expressed to varying degrees in the third 
instar larva (Fig. 2, M and N).

Although the above analysis is compatible with the notion 
that the postsynaptic expression of Htl is functionally relevant, 
it does not have the resolution necessary to provide reliable evi­
dence for Htl activity. To explore this possibility directly, we exam­
ined the NMJs of larvae in which htl activity is reduced through 
the muscle-directed expression of an htl dominant-negative 
transgenic construct (how24BGAL4/UAS-htlDN; Michelson et al., 
1998). This manipulation caused significant alterations in the 
NMJ synaptic terminals (Fig. 3 B) as compared with sibling 
controls (Fig. 3 A). The defects were quantified by counting the 
number of boutons per muscle and normalized to muscle sur­
face area, revealing a significant (40%) reduction in synaptic 
size (Fig. 3 G and Fig. S3 A).

Figure 1.  Multiple FGF pathway components modify Smn-dependent viability. (A) Schematic diagram depicting the FGF signaling pathway in Drosophila. 
In Drosophila, pathway activation is mediated by the two known FGF receptor orthologues, breathless (btl) and heartless (htl) (Glazer and Shilo, 1991). 
btl, which functions in the tracheal system, is activated by its ligand branchless (bnl) (Sutherland et al., 1996), whereas htl, which functions in the mesoderm 
and muscles, is activated either by the thisbe (ths) (Kerr et al., 2003) or pyramus (pyr) (Stathopoulos et al., 2004) ligands. Both receptors act through  
Sos-Grb2 to activate Ras/Raf/MAP kinase signaling. Additional regulation of Ras/Raf/MAP kinase signaling occurs through stumps (Vincent et al., 1998), 
which regulates the phosphatase corkscrew (csw) (Petit et al., 2004). In turn, Csw negatively regulates sprouty (sty), itself a negative regulator of Raf, 
thereby leading to MAPK activation (Jarvis et al., 2006). (B) The lethal phenotype associated with mesoderm-specific how24BGAL4-directed expression 
of UAS-Smn-RNAiC24 is enhanced by the reduction of the FGF signaling pathway components htl, stumps, and breathless. (C) sprouty alleles suppress the 
how24BGAL4 UAS-Smn-RNAi lethal phenotype. Significant differences are indicated (*, P < 0.05; **, P < 0.01).
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Figure 2.  Heartless localizes to the postsynaptic region of the Drosophila larval NMJ. All panels show wild-type NMJs derived from larval muscle 4.  
(A, D, G, and J) Htl (green) expression in the NMJ boutons. (B) Dlg (red) marks the postsynaptic region of the NMJ. (C) Htl (green) and Dlg (red) expression 
coincide at the larval NMJ. (F) Htl (green) and the presynaptic nc82 (red) expression do not overlap at the NMJ boutons. (I) Mutually exclusive expres-
sion of Htl (green) and presynaptic marker Csp (red) at the larval NMJ. (L) Htl (green) expression does not colocalize with presynaptic HRP staining (red).  
(M and N) qPCR from mRNA derived from tissues extracted from third instar larvae reveals the expression of htl and its ligands, ths and pyr, in the brain 
(M) and muscle (N). Bar, 5 µm.
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which reflects synaptic size, revealed that muscle-specific stumps 
overexpression resulted in a 15–20% increase in the number of 
synaptic boutons at muscle 4 (Fig. 3 G and Fig. S3 A) and a 35% 
increase at the muscle 6/7 A3 synapse (Fig. S4) relative to con­
trols. Though there was a significant effect on NMJ size, there 
were no gross morphological defects as the localization of pre- 
(anti-HRP) and postsynaptic markers (anti-Dlg) were not detect­
ably altered, and there was no major variation in muscle size or 
morphology. Thus, the effects of FGF loss-of-function (Fig. 3, B,  
C, and G; and Fig. S3 A) are opposite to those observed for FGF  
gain-of-function (Fig. 3, D and G; and Fig. S3 A) in the regula­
tion of synaptic elaboration on muscle 4, a strong genetic argu­
ment in favor of a functional role for FGF signaling at the NMJ.

In contrast, presynaptic expression of RNAi transgenes for 
htl and stumps using the elavGAL4 driver did not result in 
any measurable changes in synaptic size (elavGAL4:UAS-htl or 
elavGAL4:UAS-stumps; Fig. 3, E–G; and Fig. S3 A), suggesting 
that htl and stumps are not active presynaptically. It is important 
to point out, however, that we cannot exclude a presynaptic role 
for these elements of the FGF pathway given the possibility that 
RNAi in neurons may not have been effective. Despite this caveat, 
these experiments demonstrate that activation of the FGF path­
way in the muscle is required to regulate the size of the NMJ.

FGF signaling in muscles affects 
responsiveness to presynaptic  
transmitter release
The preceding experiments show that altering FGF components 
in the muscle influences presynaptic morphology, which is likely 
accompanied by changes in either transmitter release or post­
synaptic receptivity. To directly test this possibility, we per­
formed electrophysiological measurements of evoked excitatory 
junction potentials (EJPs) under conditions in which we either 
increased or decreased FGF signaling selectively in the muscle 
using the how24BGAL4 driver. Perturbation of FGF signaling in 
muscles primarily leads to altered mEJP (miniature EJP) ampli­
tude or quantal size (Fig. 4), a phenotype most often associated 
with the postsynaptic compartment (Petersen et al., 1997). Thus, 
increasing the expression of wild-type Htl decreases the aver­
age mEJP amplitude by more than 50%, whereas inhibition of 
FGF signaling through expression of the dominant-negative htl 
transgene increases mEJP amplitude by 50%. Interestingly, 
such reciprocal regulation of quantal size by htl is also mirrored 
in our EJP measurements (Fig. 4, A and B). As a result, quantal 
content (defined as the number of synaptic vesicles released per 
action potential and estimated by dividing the mean EJP re­
sponse by the mean mEJP amplitude) remains essentially un­
changed across genotypes. In addition, there are no observed 
changes in the frequencies of spontaneous release. It is note­
worthy that changes in EJP and mEJP values are contrary to 
those observed for presynaptic bouton number, an observation 
most parsimoniously explained through feedback mechanisms 

Figure 3.  heartless signaling regulates NMJ morphology. (A) Wild-type 
NMJ derived from larval muscle 4. (B) Drastic reduction in NMJ size in 
how24BGAL4 animals driving expression of a transgenic construct carry-
ing a dominant-negative heartless (UAS-htlDN). The how24BGAL4 driver 
expresses GAL4 predominantly in the muscles. (C) Reduction in NMJ size 
by overexpression of Sprouty. (D) Expansion of the NMJ in animals over-
expressing Stumps by how24BGAL4. (E) Neuronal overexpression of htl 
RNAi by elavGAL4 has no effect on NMJ size or morphology. (F) Neuronal 
overexpression of stumps RNAi has no effect on NMJ size and/or morphol-
ogy. (G) Quantitation of bouton number/muscle in animals of the indicated 
genotypes, normalized to muscle surface area (MSA) as a percentage 

of wild type (WT). how24BGAL4/+ animals are used as controls. The 
ANOVA multiple comparison test was used for statistical analysis of the 
bouton number/muscle. P ≤ 0.05. Bar, 50 µm. n = 40.
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interactions between this pathway and Smn arise from the cumu­
lative, rather than synergistic, effects of these mutations. If these 
interactions were due to additive effects, then the introduction of 
a single recessive allele of either btl or htl would not be expected 
to significantly alter the NMJ phenotype of Smn mutants. There­
fore, we assayed whether either a strong hypomorphic allele of 
btl (btldev1) or a null allele of htl (htlAB42) could modify as hetero­
zygotes the reduction of the NMJ size caused by the muscle-
specific expression of the UAS-Smn-RNAiC24 allele.

that are known to operate at the larval NMJ to control its struc­
tural and functional properties (see Discussion). Therefore, the 
morphological changes associated with FGF signal modulation 
at the NMJ are accompanied by functional abnormalities.

Synergy of Smn and FGF signaling in 
muscles regulates NMJ growth
Given that the effects of loss of FGF signaling on NMJ mor­
phology are independent of Smn, it is possible that the observed 

Figure 4.  Postsynaptic FGF signaling regulates the quantal size of transmitter release. (top) Representative recordings of EJP and mEJP at 0.5 mM extracel-
lular Ca2+ are shown for control (how24BGAL4-w[iso]), muscle expression of wild-type Htl (how24BGAL4-UAS-htl), muscle expression of a Htl dominant-
negative Htl (how24BGAL4-UAS-htl[DN]), and muscle expression of an RNAi targeted against Htl (how24BGAL4-UAS-htl[RNAi]). Whereas Htl expression 
reduces both EJP and mEJP amplitude, Htl inhibition leads to significantly larger EJP and mEJP amplitudes. Horizontal scale bar is 100 ms for EJPs and  
200 ms for mEJPs. Dotted line represents magnitude of control EJP. (bottom) Quantification of EJP amplitude, mEJP amplitude, quantal content, and mEJP frequency  
in the four genotypes. Both EJP and mEJP amplitude are altered after experimental perturbation in Htl signaling in the muscle. Quantal content of transmit-
ter release, however, remains unchanged. Similarly, the frequency of spontaneous release is comparable across genotypes. Asterisks denote P < 0.01 
(ANOVA). The number of animals recorded for each genotype is shown within the first graph.
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Examination of larvae heterozygous for either of the two 
FGF receptors (how24BGAL4/btldev1 or how24BGAL4/htlAB42) 
revealed the introduction of these mutations had no significant 
effect on the NMJ size of animals from the how24BGAL4 driver 
genetic background (how24BGAL4/+) as assayed by the num­
ber of synaptic boutons per unit of muscle surface area (MSA; 
Fig. 5, A, C, E, and G; and Fig. S3 B). In contrast, when Smn func­
tion is reduced by the introduction of the UAS-Smn-RNAiC24  
allele into these genetic backgrounds (how24BGAL4 UAS-Smn-
RNAiC24/btldev1 and how24BGAL4 UAS-Smn-RNAiC24/htlAB42), 
these heterozygous FGF receptor mutations elicited a dras­
tic decrease in synaptic size when compared with loss of 
Smn alone (how24BGAL4 UAS-Smn-RNAiC24/+; Fig. 5, B, D, 
and G; and Fig. S3 B).

Because these results indicate the link between FGF 
signaling and Smn activity is synergistic rather than additive, 
we applied a further, more stringent assay to determine the sen­
sitivity of the NMJ to this interaction. Examination of trans­
heterozygous larvae carrying a combination of null alleles of Smn 
and htl (SmnX7/htlAB42) revealed that simultaneously reducing 
the dosage of each locus by half leads to a statistically significant 
decrease in the number of synaptic boutons per unit MSA when 
compared with each heterozygote alone (SmnX7/+ and +/htlAB42; 
Fig. 5 G and Fig. S3 B). Thus, this experiment provides formal 
evidence that the relationship we have uncovered is synergistic 
in nature and is not merely due to the additive effects of two 
mutations that independently affect the NMJ.

Activation of FGF signaling in muscles 
rescues synaptic defects caused by  
Smn RNAi
Because reduction of FGF signaling clearly exacerbates the 
NMJ defects caused by Smn loss, we examined whether activa­
tion of this pathway could reverse these effects. As shown in 
Fig. 6, muscle-specific overexpression of wild-type Htl com­
pletely rescues the NMJ phenotypes associated with both the 
UAS-Smn-RNAiC24 allele and the stronger UAS-Smn-RNAiN4 al­
lele (Fig. 6, B–D and G; Fig. S3 C). In control crosses, expression 
of Stumps alone resulted in an expansion of synaptic branch­
ing (Fig. 6 E); however, as observed for Htl, expression of 
Stumps completely suppressed the NMJ defects observed in the 
how24BGAL4; UAS-Smn-RNAiC24 background (Fig. 6 F and G; 
and Fig. S3 C). These results suggest that Smn is situated upstream 
of the FGF pathway. Based on this genetic behavior, however, 
we could not distinguish whether Smn directly regulates htl or 
any other pathway component.

Smn regulates expression of the FGF 
receptor, Htl, and its downstream  
effector Stumps
To further explore the relationship between Smn and FGF signal­
ing pathway components, we first tested whether reducing Smn 

Figure 5.  Synergy between Smn and FGF signaling regulates NMJ mor-
phology. (A) Wild-type NMJ derived from larval muscle 4. how24BGAL4 
expresses GAL4 predominantly in the mesoderm (muscles). (B) Reduction 
in NMJ size resulting from muscle-specific (how24BGAL4) reduction of 
Smn (UAS-Smn-RNAiC24). (C) Heterozygotes carrying the null allele htlAB42 
show no effect on the number of synaptic boutons. (D) Reduction in NMJ  
size in how24BGAL4 UAS-Smn-RNAiC24/htlAB42. (E) how24BGAL4; btldev1/+  
animals do not show any significant effects on the NMJ. (F) how24BGAL4 
UAS-Smn-RNAiC24/btldev1 transheterozygous animals have reduced syn-
apses. (G) Quantitation of bouton number/muscle in animals of indicated 
genotypes, normalized per muscle surface area (MSA) as a percentage 
of wild type (WT). how24BGAL4/+ is used as control. The ANOVA 
multiple comparison test was used for statistical analysis of the bouton 

number/muscle. P ≤ 0.05. Bar, 50 µm. n = 40. All preparations were 
stained with anti-HRP (red) and anti-Dlg (green). The muscle nucleus was 
labeled using DAPI.
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expression impacts expression of Htl and Stumps. Using the 
how24B driver to direct expression of the UAS-Smn-RNAiN4 
transgenic construct in the musculature resulted in a drastic post­
synaptic reduction in Htl levels at the NMJ (Fig. 7, D–F) as well 
as a more general loss of Stumps staining throughout the muscle 
(Fig. S5). Conversely, we did not detect any obvious changes in 
the distribution or levels of the Smn protein when htl activity was 
reduced postsynaptically (how24BGAL4/UAS-htlDN; Fig. 7, G–I), 
indicating that FGF activity does not influence Smn expression. 
These observations corroborate the relationship observed above 
and indicate that Smn regulates elements of the FGF pathway.

Ideally, the aforementioned observations, which address 
the issue of autonomy in the Smn–FGF pathway interaction, 
would have included data derived from classical alleles of 
Smn. Unfortunately, however, it is practically impossible to 
generate the motor neuron or muscle mitotic clones necessary 
to examine this question. For this reason, we extended our ob­
servations to include the Drosophila wing imaginal disc, a tis­
sue that is well suited to this type of experiment and where the 
distribution and expression levels of elements of the FGF 
pathway have been well characterized (Sato and Kornberg, 
2002). An additional benefit of analyzing this relationship in 
the wing disc is that it allows us to determine whether the abil­
ity of Smn to regulate Htl is not specific for the NMJ but is con­
served across tissues.

Therefore, we monitored Htl and Stumps expression in 
Smn loss-of-function mitotic clones that were generated using 
several different classical alleles of Smn. In these Smn/ cells, 
both Htl and Stumps expression were lost (Fig. 8, A–F). htl ex­
pression is unaffected in stumps mutant embryos, and conversely, 
stumps expression is unaffected in htl mutant embryos (Vincent 
et al., 1998), and we thus attribute these observations in the wing 
imaginal disc to the loss of Smn activity. Together, these results 
both corroborate and extend our investigation of the epistatic re­
lationship established between Smn and FGF signaling.

As Smn is required for basic RNA metabolism, removal of 
its activity might be expected to affect expression of multiple 
proteins. Therefore, to test the specificity of the molecular rela­
tionship between Smn and FGF, we monitored the effects of loss 
of Smn function on the expression of F-actin and the transcrip­
tion factor, Cut, a gene whose expression overlaps that of Htl in 
the developing wing. Our results indicate that removal of Smn 
activity had no effect on the distribution or levels of either cyto­
skeletal actin (Fig. 8, G–I) or Cut (not depicted) in the wing imag­
inal disc. Consistent with this notion, reduction of Smn at the 
NMJ had no discernable effect on Dlg expression (Fig. 7, D–F).

RNAi-induced knockdown of Smn affects 
htl transcript levels
Having established that reduction of Smn at the NMJ or removal  
of Smn activity in the wing imaginal disc reduces or eliminates 
Htl expression, respectively (Fig. 7 D, Fig. 8 B), indicating that 
the SMN–FGF relationship is not specific for the NMJ, we were 

Figure 6.  Overexpression of Htl rescues NMJ defects caused by reduced 
Smn. how24BGAL4 expresses GAL4 predominantly in the mesoderm 
(muscles). (A) Wild type NMJ derived from larval muscle 4. (B) Reduc-
tion in NMJ size in how24BGAL4 UAS-Smn-RNAiN4/+ animals. (C) The 
how24BGAL4 UAS-Smn-RNAiN4/+ and (D) how24BGAL4 UAS-Smn-
RNAiC24/+ NMJ size defects are rescued by overexpression of Htl (UAS-
htlwt). (E) how24BGAL4/UAS-stumps individuals show an expansion in 
NMJ size. (F) The how24BGAL4 UAS-Smn-RNAiC24/+ NMJ size defects 
are rescued by overexpression of Stumps (UAS-stumps). (G) Quantitation 
of bouton number/muscle in animals of different genotypes, normalized 
per muscle surface area (MSA) as a percentage of wild type (WT).  
how24BGAL4; UASGFP is used as control. The ANOVA multiple comparison 

test was used for statistical analysis of the bouton number/muscle. P ≤ 
0.05. Bar, 50 µm. n = 40. All preparations were stained with anti-HRP 
(red) and anti-Dlg (green). The muscle nucleus was labeled using DAPI.
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aforementioned genetic background of two independent in­
sertions of Smn transgenes (UAS-Smn-FLAGB and UAS-Smn-
FLAGC) that partially rescue Smn lethality (Chang et al., 2008) 
results in slight increases in Smn transcripts. It is noteworthy 
that, depending on the construct used, we observed signifi­
cantly different changes in htl levels. Remarkably, expression 
of UAS-Smn-FLAGC, which led to only a slightly higher increase 
in Smn levels (27% of wild type) when compared with the 

interested in exploring the underlying mechanism. Given the 
role of Smn in snRNP biogenesis, it is possible that reduction of 
Smn could alter levels of htl transcript, so we tested this using 
mRNA isolated from third larval instar brains. As shown in 
Fig. 8 J, knockdown of Smn (tubulinGAL4::UAS-Smn-RNAiFL26B) 
results in Smn transcript levels being reduced to 16% of wild 
type (tubulinGAL4). Concomitantly, htl transcript is reduced to 
45% of the wild-type value. Interestingly, coexpression in the 

Figure 7.  Effects of Smn on the expression of FGF signaling pathway component at the NMJ. All panels show NMJs derived from larval muscle 4 from 
wild-type (A–C) and how24BGAL4 UAS-Smn-RNAiN4/+ (D–F) individuals. (A) Htl (green) expression is detected in the neuron as well as in the NMJ bou-
tons. (B) Dlg (red) marks the postsynaptic region of the NMJ. (C) An overlap of A and B showing that Htl (green) expression overlaps with Dlg (red) in 
the postsynaptic region of the NMJ. (D) GAL4-directed muscle-specific reduction of Smn results in a loss of Htl (green) expression in postsynaptic boutons.  
(E) Dlg (red) marks the postsynaptic region of the NMJ. (F) An overlap of D and E showing that Htl expression is lost from the postsynaptic portion of the NMJ  
in a how24BGAL4 UAS-Smn-RNAiN4/+ background. (G) Smn (green) expression in NMJ in animals expressing a dominant-negative heartless construct in 
the musculature (how24BGAL4; UAS-htlDN). (H) The same NMJ co-stained with HRP. (I) Overlap between G and H. Bar, 50 µm. n = 40.
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Figure 8.  Effects of Smn on the expression of FGF signaling pathway components in the wing disc. (A–I) Smn73Ao/Smn73Ao mitotic recombination clones in 
third instar wing imaginal discs stained for Smn (A, D, and G), Htl (B), Stumps (E), and F-actin (H). Smn, Htl, and Stumps expression were monitored using 
anti-Smn (green), anti-Htl, and anti-Stumps antibodies (red). In C and F, DAPI (blue) was used to identify nuclei. Notice that Htl (B) and Stumps (E) expression 
is not detected in Smn73Ao/Smn73Ao clones, whereas removal of Smn activity has no effect on F-actin distribution (H). (C, F, and I) Merged images of A and 
B, D and E, and G and H, respectively, in which nuclei are also detected (blue). Note the presence of two Smn+ cells that also express Stumps are located 
in the center of the clone depicted in D, E, and F. (J) Quantitative RT-PCR from third instar larval brains demonstrates that altering the level of Smn dosage 
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signaling inversely regulates quantal size. Thus, FGF perturba­
tion in muscle alters both presynaptic growth and specific as­
pects of synaptic transmission. These observations imply the 
existence of functional trans-synaptic homeostatic mecha­
nisms, which have been previously shown to compensate for 
similar changes by increasing presynaptic bouton numbers and 
transmitter release (Davis et al., 1998; Sigrist et al., 2000, 2002; 
Menon et al., 2004). However, in this specific instance, only 
synaptic growth (bouton number) but not transmitter release 
(quantal content) is affected, the precise mechanisms for which 
remain unclear. Moreover, the fact that mEJP amplitudes are 
affected suggests that postsynaptic receptivity to glutamate  
release from the presynapse is altered. Similar quantal size 
phenotypes have been observed in several instances previously. 
For instance, postsynaptic PKA and NF-B are known to regu­
late quantal size (Davis et al., 1998; Heckscher et al., 2007) 
through changes in DGluRs. Directly altering the expression of 
various GluR subunits also predictably influences quantal size 
(Petersen et al., 1997; Marrus et al., 2004; Featherstone et al., 
2005). The genetic interaction we have demonstrated between 
FGF and Smn can be described as an epistatic relationship in 
which the FGF pathway functions downstream of Smn and is 
consistent with the observation that neuromuscular defects as­
sociated with loss of Smn function in muscle can be rescued by 
muscle-specific activation of FGF signaling. Intriguingly, the 
relationship we describe here between Smn and FGF is valid 
beyond the NMJ, as loss of Smn function genetic mosaics in the 
wing disc clearly result in the down-regulation of FGF signal­
ing. Although the precise molecular mechanism underlying 
this relationship is still elusive, Smn activity affects transcript 
and protein levels of the FGF receptor, as well as the expres­
sion of additional elements of the FGF pathway. Whether this 
defines a cascade of interrelated events or whether each of these 
changes reflects an independent Smn-related regulatory event 
remains to be determined. Given the fact that Smn mutants  
in Drosophila display altered postsynaptic currents and se­
verely compromised postsynaptic receptor clustering in mus­
cles (Chan et al., 2003), it is conceivable that FGF signaling 
represents a link between Smn activity and postsynaptic gluta­
mate receptor levels.

Here it should be noted that a link between SMN and the 
FGF pathway has been suggested by a series of studies in verte­
brates where a molecular interaction between an FGF-2 isoform 
and the SMN protein has been described (Claus et al., 2003, 
2004; Bruns et al., 2009).These studies raise the possibility that 
FGF-2 may negatively interfere with SMN complex function 
through SMN itself. Such observations would, on first appear­
ance, suggest that the epistatic relationship between SMN and 
FGF signaling in vertebrate cells may be the reverse of what we 
observe in Drosophila. In point of fact however, the differences 
in the experimental parameters and approaches between these 
studies do not allow meaningful comparisons.

expression of UAS-Smn-FLAGB (21% of wild type), fully re­
stored htl transcript levels to the wild-type value, as opposed to 
the small rescue effect we see with UAS-Smn-FLAGB. These re­
sults demonstrate that reduction of Smn activity acts to modu­
late the levels of htl mRNA. Furthermore, it appears that a small 
increase in Smn may lead to a large change in the levels of htl, 
which in turn influence the survival of the animal.

Discussion
Given the variability of the SMA phenotype and the proven re­
lationship between the severity of the disease and small changes 
in wild-type SMN activity, there is a significant possibility that 
any modifiers of SMN activity, either direct or indirect, will 
have therapeutic value. To systematically explore the genome 
for genes that are capable of modulating SMN function in vivo, 
we took advantage of the existence of an SMA model offered by 
Drosophila to search for Smn genetic interactors (Chang et al., 
2008). The model we developed is based on the lethality and an 
associated neuromuscular junction phenotype linked to loss of 
Smn function, a phenotype remarkably similar to the NMJ pheno­
type reported for human patients (Kariya et al., 2008). Though 
the role of SMN in biogenesis of snRNPs has been well docu­
mented, its regulators and downstream effectors have not been 
systematically delineated, nor has the link between mutations in 
SMN and the specific loss of motor neurons seen in SMA pa­
tients been uncovered. It may be the case that the specificity of 
this phenotype is reflective of either specialized SMN functions 
at the NMJ or a particular sensitivity of motor neurons to the 
loss of SMN activity (McWhorter et al., 2003; Carrel et al., 
2006; Kariya et al., 2008; Murray et al., 2008, 2010; Kong et al., 
2009). Among the genes our genetic strategy revealed as Smn 
loss of function modifiers was breathless, encoding an FGF re­
ceptor, thus establishing a link between Smn and the FGF path­
way (Chang et al., 2008).

Importantly, in addition to this link, we also found that FGF 
signaling is independently involved in NMJ morphogenesis, a 
function demonstrated in vertebrates (Fox et al., 2007) but not 
previously attributed to this pathway in Drosophila despite exten­
sive characterization of its essential role in branching morpho­
genesis of the tracheal system, migration of multiple cell types, as 
well as the proper patterning of the mesoderm (Shishido et al., 
1993, 1997; Beiman et al., 1996; Gisselbrecht et al., 1996; 
Michelson et al., 1998; Vincent et al., 1998; Schulz and Gajewski, 
1999; Ghabrial et al., 2003; Stathopoulos et al., 2004). The  
morphological effects we observe, caused by the modulation of 
several pathway elements, plainly reveal an involvement of FGF 
signaling at the NMJ, a role confirmed by the electrophysiologi­
cal analyses. The down-regulation of FGF signals in muscle re­
sults in a reduction of bouton numbers and is associated with 
increased mEJP amplitudes. The opposite effect is observed when 
FGF signaling is increased in muscles, suggesting that FGF 

results in changes in htl transcript levels. The following genotypes are depicted: w1118; tubulinGAL4 (tubGAL4)/+ (columns 1 and 2), w1118; UAS-Smn-
RNAiFL26B/+; tubGAL4/+ (columns 3 and 4), w1118; UAS-Smn-RNAiFL26B/UAS-Smn-FLAGB; tubGAL4/+ (columns 5 and 6) and w1118; UAS-Smn-RNAiFL26B/+; 
tubGAL4/UAS-Smn-FLAGC (columns 7 and 8). Levels of Rp49 were used for normalization. Bar, 10 µm.
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(Johns Hopkins University School of Medicine, Baltimore, MD; Cousins et al., 
1996; Lee et al., 1996), Mark Krasnow (Stanford University School of 
Medicine, Stanford, CA; Sutherland et al., 1996), and Maria Leptin (Euro-
pean Molecular Biology Laboratory, Heidelberg, Germany; Vincent et al., 
1998), respectively. UAS-FLAG-Smn, UAS-Smn-RNAiC24, UAS-Smn-RNAiFL26B, 
and UAS-Smn-RNAiN4 transgenic strains were used to modulate the Smn 
expression level (Chang et al., 2008). The actGAL4 (Ito et al., 1997),  
elavGAL4 (Luo et al., 1994), how24B-GAL4, ptcGAL4 (Brand and Perrimon, 
1993), and tubGAL4 (Lee and Luo, 1999) strains were used to drive the 
genes placed under the UAS promoter.

Viability assay
Three driver GAL4 males were crossed with four UAS transgenic females 
and cultured on standard fly media overnight. Flies were transferred to 
fresh media and allowed to lay eggs for 2 d. Adults were subsequently 
discarded and the progeny were cultured at 25°C. For all crosses, the 
percentage of viability was calculated as (1) the total number of adults di-
vided by the total number of pupae (defined as Adults); or (2) the total 
number of dead pupae 4–5 d after puparium formation plus the number of 
individuals that reached adult stages divided by the total number of pupae 
(defined as Late Pupal Viability). Viability was calculated based on four 
independent crosses for each genotype.

Antibody staining
NMJ preparation and analysis: third instar larvae were dissected in cold 
1x phosphate-buffered saline (PBS) and fixed at room temperature (RT) for 
20 min in 4% paraformaldehyde (PFA). The samples were washed in 0.1% 
Triton X-100 in PBS (PTX) and incubated overnight at 4°C with primary 
antibody. The primary antibody was washed off with PTX at RT. The samples 
were incubated at RT with secondary antibody for 90 min. This was fol-
lowed by PTX wash, and the tissues were mounted in Vectashield mounting 
media with DAPI (Vector Laboratories). Bouton numbers were counted 
using a microscope (TE2000; Nikon), based on the Discs large and anti-HRP 
staining in the A3 segment muscle 4 as indicated. The muscle area for 
every animal was measured, and no significant difference was observed 
among different genotypes. At least 20–25 animals of each genotype were 
dissected for the bouton analysis. The ANOVA multiple comparison test 
was used for statistical analysis of the bouton number/muscle. The images 
were pseudo-colored using Adobe Photoshop CS2 (v9.0.2). Wing imagi-
nal disc preparation and analysis: third instar larvae were dissected and 
fixed as described previously (Kankel et al., 2004). Discs were stained at 
RT with the following primary antibodies in PBS Triton X-100 (PBSTx): 
mouse anti-Smn (Chang et al., 2008) at 1:500; rabbit anti-Htl (Shishido et 
al., 1997) at 1:3,000; rabbit anti-Stumps (Vincent et al., 1998) at 1:2,000; 
and mouse anti-Cut (Developmental Studies Hybridoma Bank) at 1:10; and 
were visualized with Alexa Fluor 488 goat anti–mouse (green) and Alexa 
Fluor 594 goat anti–rabbit (red), both at 1:1,000 (Invitrogen). Alexa Fluor 
594 conjugated to phalloidin was used at 1:100 (Invitrogen). Discs were 
mounted in Vectashield with DAPI.

Microscopy
All images were collected with a spectral point scanning confocal (model 
C1si; Nikon) connected to an inverted microscope (TE2000; Nikon) 
equipped with DIC, phase, and epi-fluorescence optics; 40x Plan Fluor NA 
1.4 objective lens; the Perfect Focus System for continuous maintenance of 
focus; 100-mW mercury arc lamp illumination for viewing fluorescence by 
eye; and confocal scanning using solid-state diode lasers (Melles Griot): 
405 nm, 488 nm (10 mW), and 561 nm (10 mW). The image acquisition 
software used was Nikon EZ-C1. All samples were mounted and imaged 
in Vectashield mounting medium with DAPI (Vector Laboratories) at room 
temperature. Adobe Photoshop CS5 was used to pseudocolor images.

Electrophysiology
Electrophysiological recordings were made from muscle 6 in segment A3 
from wandering third instar larvae in modified HL3 saline (0.5 mM Ca2+) 
as described previously (Stewart et al., 1994; Sanyal et al., 2002; Kim 
et al., 2009). In brief, electrodes with tip resistances between 25–30 MΩ 
were used to record evoked excitatory junction potentials (EJPs) after a 
stimulus train delivered at 0.5 Hz to the segmental nerve such that both 
units were consistently recruited. Only recordings where the resting mem-
brane potential was more polarized than 60 mV were selected for analy-
sis. Because EJPs were larger than 10 mV in amplitude, Martin’s correction 
for nonlinear summation was applied to all recordings (McLachlan and 
Martin, 1981; Kim et al., 2009). Spontaneous events (mEJPs) were re-
corded for a total duration of 2 min and were analyzed using MiniAnalysis 

An important question raised by the above phenotypic 
analyses is whether the abnormalities associated with FGF 
and/or Smn perturbations reflect developmental or maintenance 
issues. It may be the case that the larval system in Drosophila is 
not ideally suited to differentiate between these alternatives as 
larval tissue is destined to undergo programmed cell death (his­
tolysis) during metamorphosis. One advantage that flies do offer, 
however, is the ability to dissociate the development of the 
adult neuromuscular system from its maintenance as the en­
tirety of its development occurs during the pupal stage, before 
emergence of the adult (Fernandes and Keshishian, 1998; 
Consoulas et al., 2002; Hebbar and Fernandes, 2004). Thus, the 
Drosophila pupa/adult may provide a platform to address these 
issues, as Drosophila displays Smn-dependent adult phenotypes 
(unpublished data; Rajendra et al., 2007). In light of the rela­
tionship we established between Smn and FGF signaling and 
the known involvement of FGF signaling in the development of 
both the larval and adult musculature (Emori and Saigo, 1993; 
Shishido et al., 1993, 1997; Vincent et al., 1998; Imam et al., 
1999; Schulz and Gajewski, 1999; Stathopoulos et al., 2004; 
Dutta et al., 2005; Wilson et al., 2005; Kadam et al., 2009), it 
will be particularly interesting to examine the effects of modulat­
ing FGF activity on the aforementioned processes. Such studies 
may be of particular relevance to SMA where it is quite difficult 
to discern the developmental consequences of SMN loss in 
humans, as neurodegenerative symptoms displayed by patients 
may obscure basic problems resulting from altered develop­
mental programs such as neuronal pathfinding, initial NMJ for­
mation, etc (Simic et al., 2008; Liu et al., 2010).

In vertebrates, synaptic development and maintenance use 
at least three distinct signaling mechanisms: the TGF-, wing-
less, and FGF pathways. In Drosophila, it is noteworthy that the 
first two have been demonstrated to function in a similar fashion 
at the NMJ (Packard et al., 2002; McCabe et al., 2003). Re­
markably, our genetic screens involving Smn have identified el­
ements of all three of these pathways as modifiers of Smn-related 
phenotypes (Chang, et al., 2008; unpublished data). We con­
sider these connections particularly significant as they raise the 
possibility that Smn may serve as a node, integrating signaling 
events crucial for NMJ function, potentially leaving this struc­
ture particularly vulnerable to the loss of Smn. Though further 
correspondence between the Drosophila model and the human 
condition remains to be determined, the Smn–FGF relationship 
we observe in Drosophila raises the possibility that pharmaco­
logical manipulation of FGF signals might mitigate SMN motor 
neuron–related abnormalities.

Materials and methods
Drosophila stocks and culture
All fly stocks were maintained on standard fly medium at 25°C. The btldev1, 
htlAB42, P{w+mC=UAS-htl.DN.M}33-B40; P{w+mC=UAS-htl.DN.M}33-B61 
(UAS-htlDN), P{w+mC=UAS-htl.M}YYDFR-F16 (UAS-htlwt), sty5, and sty226 al-
leles were obtained from the Bloomington Drosophila Stock Center (Bloom-
ington, IN). The btlf02864 allele was from the Exelixis collection at Harvard 
Medical School (Boston, MA), and the UAS-RNAi-btl27106, UAS-RNAi-
htl6692, UAS-RNAi-stumps21317, and UAS-RNAi-ths24536 alleles were from the 
Vienna Drosophila RNAi Center (Vienna, Austria). The UAS-btl, UAS-sty, 
and UAS-stumps (UAS-dof) transgenic lines were gifts from Denise Montell 
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software (Synaptosoft, Inc.). EJPs were low-pass filtered and analyzed in 
Clampfit and representative images were generated in Microsoft Excel and 
Adobe Photoshop. Quantal content is determined by dividing the average 
corrected EJP amplitude by the average mEJP amplitude in each instance. 
Statistical significance was determined using ANOVA.

Strain construction
Smn FRT 79D-F chromosomes were constructed by recombining the Smn73Ao 
(Chan et al., 2003), Smnf05960 (Thibault et al., 2004), and SmnX7 (Chang 
et al., 2008) alleles onto the ru1 h1 th1 st1 P{FRT(whs)}2A chromosome ob-
tained from the Bloomington Stock Center. Multiple recombinant strains for 
each allele were balanced using the TM6C, Sb Tb chromosome. Indepen-
dent recombinant lines were then selected from candidate strains on the 
basis of a failure to complement SmnX7, accompanied by loss of ru1 h1 th1 
st1 markers while maintaining the w+ expression indicative of the presence 
of the FRT.

Somatic mitotic clones
Clones of Smn tissue were induced by mitotic recombination using the FLP-
FRT technique (Golic, 1991; Xu and Rubin, 1993). Mutant Smn clones in 
wing imaginal discs were identified by loss of GFP driven by the ubiquitin 
reporter (Ubi-GFP). The crosses were as follows: y w hsFLP122; Ubi-GFP 
FRT 79D-F females were crossed to SmnX7 FRT 79D-F/TM6C, Sb Tb, 
Smn73Ao FRT 79D-F/TM6C, Sb Tb and Smnf05960 FRT 79D-F/TM6C, Sb Tb 
males. Approximately 20 y w hsFLP122; Ubi-GFP FRT 79D-F females were 
crossed to Smn FRT 79D-F/TM6C, Sb Tb males and allowed to lay eggs for 
3 d at 25°C; vials were then heat-shocked at 37°C for 2 h on two con-
secutive days to induce somatic clones. The somatic clones produced using 
the SmnX7 allele produced very small Smn somatic clones and were not 
used for assessing Htl or Stumps expression. Smn expression was not de-
tected in somatic clones generated using the Smn73Ao allele, suggesting that 
it behaves as a molecular null. In Smnf05960 somatic clones, Smn levels were 
strongly reduced, but not eliminated, suggesting that it is hypomorphic in 
nature. Consistent with this notion, Smn and Stumps expression were re-
duced, but not eliminated in Smnf05960 somatic clones.

RNA extraction, quality control, and reverse transcription
RNA was extracted following standard procedure. In brief, third instar 
larvae were dissected in ice-cold PBS, and brains and wing imaginal discs 
(100 brains/sample) were collected into TRIzol (Life Sciences). Samples 
were homogenized, and RNA was isolated after purification on an RNeasy 
mini column (QIAGEN). Quality control of RNA was assessed with a Bio-
analyzer 2100 (Agilent Technologies) and only high quality samples were 
chosen for further analysis of gene expression. 200 ng of total RNA were 
reverse transcribed using the High Capacity RNA-to-cDNA kit (Applied 
Biosystems) following the manufacturer’s instructions.

RT-PCR
The following oligonucleotides were designed for RT-PCR assays: htl 
sense: 5-CGGAAGGGATCAGGATAGGG-3 and antisense: 5-CCTCG
CCAGTCCAAAATCAG-3; Smn sense: 5-TGGGATGACTCCTTGCTGGT-3  
and antisense: 5-GAGCAACACCTCCTGCTCGT-3; Rp49/RpL32 sense:  
5-CGACGCTTCAAGGGACAGTATC-3 and antisense: 5-TCCGACCAG
GTTACAAGAACTCTC-3.

Quantitative PCR
TaqMan gene expression assays (Applied Biosystems) were used to assess 
the expression of Smn (Dm01822923_s1) and heartless (Dm02373745_s1). 
The ribosomal protein gene Rp49/RpL32 (Dm02151827_g1) was used as 
a calibrator to normalize cDNA input. 6 ng of equivalent RNA was used 
for each reaction and samples were processed in triplicate. To determine 
relative gene expression levels, data were processed using the 2-DDCt 
method (Livak and Schmittgen, 2001) normalized to the tub-GAL4 control 
sample. All calculations and plots were generated using Excel (Microsoft).

Online supplemental material
Fig. S1 shows that Smn lethality is modified by mutations in the Drosophila 
FGF receptor breathless, and Smn knockdown alters levels of downstream 
targets of FGF pathway. Fig. S2 shows that postsynaptic expression of htl 
RNAi results in a loss of Htl protein localization. Fig. S3 shows bouton counts 
(non-normalized) of larval NMJs from genotypes depicted in Figs. 3 G,  
5 G, and 6 G. Fig. S4 shows expansion of the NMJ in animals overexpress-
ing Stumps by how24BGAL4. Fig. S5 shows reduction of Stumps staining 
in how24BGAL4/UAS Smn RNAi. Online supplemental material is avail-
able at http://www.jcb.org/cgi/content/full/jcb.201004016/DC1.
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