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Since the first descriptions of the s tructure of paramyosin  by  electron micro- 
s c o w  (1, 2) and x-ray diffraction (3, 4) were reported,  impor tan t  new evidence 
concerning the s tructure and propert ies  of this fibrous protein has been ob- 
ta ined (5-7). Also the entire concept of the composit ion and propert ies  of the 
"myos in"  of muscle has been completely al tered by  the pioneering work of the 
Szent-Gy6rgyi  school (10) and subsequently by  many  other investigators.  
Because paramyosin  presents certain very  dist inct  s t ructural  and biochemical  
advantages  i t  seems desirable to reinvestigate this protein  in the light of current  
concepts of the contracti le mechanism. The present  note records certain pre- 
l iminary observations on the enzymic propert ies  of the protein and on the 
physical  propert ies  of the highly elongated macromolecules as evidenced b y  
their  abi l i ty  to aggregate in highly oriented form from sl ightly alkaline solu- 
tions of medium ionic strength. 

Experimental 

Paramyosin fibrils were prepared from the white portions of the adductor muscle of the 
quahog, Venus mercenaria, after the method of Hodge; i.e., by fragmentation of the muscle 
in a blendor, followed by repeated differential centrifugation in 0.2 at KC1. The lighter frac- 
tion appeared as a homogeneous suspension of rigid, very long, thin needle-shaped structures 
as viewed in the darkfield microscope. The heavier fraction contained chiefly large aggregates 
of undissociated fibrils plus small amounts of granular or membranous material. Substantially 
similar results were obtained with the colored muscle. 

The ATPase activity was measured at constant enzyme concentration using the Lowry and 
Lopez (12) method of phosphate estimation. 

* This investigation was supported in part by a grant from the National Institute of 
Neurology and Blindness of the National Institutes of Health (B-24 C6). 

Thanks are due to the Massachusetts Institute of Technology for a Foreign Summer 
Studentship in the summer of 1955 when these experiments were performed, and to the New 
Zealand Department of Scientific and Industrial Research and Department of Education for 
leave of absence and for financial assistance. Present address: Meat Industry Research In- 
stitute of New Zealand, Box 345, Wellington, New Zealand. 
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890 PROPERTIES OF PARAMYOSIN 

The ultracentrifugation experiments were carried out in a Spinco model E analytical ultra- 
centrifuge. 

The electron microscopy was done with the Philips model EM-100 instrument. 

RESULTS 

Solubility Properties: 

Confirming the findings of Hodge (5, 6) and the recent work of Bailey (8), the 
fibrils are not dissolved by increase of ionic strength, even up to 1.0 in the pH 
range of 6-7. ~/hey are insoluble in buffer solutions (e. g., 0.3 M KC1 + 0.15 M 
phosphate, pH  6.5) commonly used to extract myosin from vertebrate muscles. 
This has been considered as supporting evidence for the view that  paramyosin 
is distinctly different from myosin although it is possible that  myosin solubility 
may  vary  considerably over the various phyla of animals. 

TABLE I 
Solubility Properties of Paramyosin 

Preparation Medium Residue 

0.4 per cent acetic acid 
0.2 N NaHCO3 
0.2 N NaHCO3 

0.4 per cent acetic acid 
0.2 N NaHCO3 
0.6 M KCI + 0.05 M phosphate pH 7.5 

Per cent 

4 
11 
11 

4 
4 

10 

Hodge (5, 6) found paramyosin to be readily soluble, except for a small 
fraction which remained as a residue, in 0.4 per cent acetic acid and also in di- 
lute alkali (5). He used acid solutions to produce the long-spacing form by 
variation of ionic strength and pH and to carry out physicochemical experi- 
ments on the shape and dimensions of the paramyosin macromolecules. 

In  the present work it was found that  the solubility suddenly increases on the 
alkaline side of neutrality (in 0.6 M KC1 + 0.05 M K phosphate, pH  7.5, or in 
0.1 ~ NaHCO3) although, as shown in Table I, an insoluble residue remains in 
all cases. 

After centrifugation of the KC1 solution of paramyosin for 30 rain. at 20,000 
R.P.M. in the preparative ultracentrifuge, a faintly opalescent solution is ob- 
tained in which no fibrils are observed when examined in the darkfield micro- 
scope or in the electron microscope (although no effort has been made as yet  to 
apply refined methods, (14, 15), to a t tempt  to visualize the individual macro- 
molecules directly). 

Reduction of ionic strength of this solution to a certain point results in the 
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R. t I .  LOCKER AND F. O. SCHMITT 891 

precipitation of the fibrous protein in a condition which is determined by the 
manner in which the experiment is performed. Dilution by simple addition of 
3 parts of water causes no visible precipitation. Addition of 4 parts of water with 
rapid stirring produces a silky sheen due to the presence of needle-like crystals 
which can readily be seen in the darkfield microscope. A sudden dilution by 
mixing the solution with 5 parts of water produces a flocculent amorphous 
precipitate which becomes crystalline after standing a few hours. Dialysis of 
the solution against 0.1 • KC1 (in the presence of 0.01 ~t K phosphate, pH 7.5) 
also produces acicular crystals but dialysis against 0.03 ~t KC1 (in the presence 
of 0.003 u K phosphate, pH 7.5) or against distilled water produces a thixotropic 
gel. I n th i s  process the elongated macromolecules aggregate in a characteristic 

Medium 

0.075 ~t glycine 
0.075 M NaCI 
0.0025 M ATP 

0.03 M veronal 
0.04 M KCI 
0.0025 M ATP 

0.02 M veronal 
0.6 M KCI 
0.0025 M ATP 

TABLE II  
Effect of Ca and M, on A TPase 

pH Added ions 

9.0 

7.0 

7.0 

(0.003 •) 

Mg 
Ca 

Mg + Ca 

Mg 
Ca 

Mg 
Ca 

Qe(20 °) 

8 
4 

167 
8 

0 
2 

22 

0 
21 

pattern as is indicated by the structure of the fibrils in the electron microscope. 
I t  should be pointed out that the homogeneity of the protein in this suspension 
of acicular crystals has not been established, although the ultracentrifuge data 
do not indicate the presence of impurities. 

A TPase  .4 ctivity: 

The suspension of native fibrils obtained after differentia] centrifugatiou as 
described above was found to have weak ATPase activity. The values shown in 
Table I I  were obtained by plotting phosphate liberation against time at con- 
stant enzyme concentration. 

I t  will be seen that at pH 9.0 the ATPase is calcium-activated and strongly 
inhibited by magnesium. This is true also at neutral reaction, at high and low 
ionic strengths, although the activity is much lower. The enzyme is specific 
for the terminal phosphate of ATP and cannot contain myokinase as is demon- 
strated by the fact that 96 per cent of the theoretical amount of phosphate for 
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892 PROPERTIES OF PARAMYOSIN 

one terminal group is liberated after 17 hours incubation with calcium ions at 
pH 9.0. A suspension of paramyosin fibrils retained substantially all of its 
ATPase activity for 4 days in the cold; a solution in 0.1 ~ NaHCO3 having the 
same initial activity as the suspension of fibrils declined in activity to zero in 
2 days. 

The activity is a linear function of time at 20 ° but at 37 ° the activity falls off 
rapidly after 10 to 15 minutes. The Qp at 20 ° was found to be 167 which would 
correspond to about 500 at 37 °. This is only about 10 per cent of the activity 
of mammalian myosin (Qp = 3000 to 6000). 

Experiments performed subsequently by A. G. Szent-GySrgyi ~ may indicate 
that the weak activity observed in our experiments is to be attributed to a small 
amount of actomyosin contaminant rather than to the paramyosin. When he 
removed actomyosin from his whole muscle extracts by treatment with ethanol, 
the ATPase activity in the remaining paramyosin was zero. These results 
suggest that the method of preparation of paramyosin as employed in our experi- 
ments is rather effectual in separating the actomyosin from the paramyosin 
since the ATPase activity of the preparation was so low. 

Action of Trypsin: 

I t  was of interest to determine whether, as in the case of myosin, tryptic 
action on paramyosin liberates two characteristically different fractions com- 
parable to light and heavy meromyosin (9). 

Under conditions comparable to those used for myosin (9) it was found that 
at 25 ° trypsin causes a rapid decline in viscosity in the first few minutes leveling 
off to about 30 per cent of initial relative viscosity in about 15 minutes. 
This result encouraged us to study the reaction in the analytical ultracentrifuge 
in the following manner. To each of three 5 ml. aliquots of paramyosin solution 
(0.6 M KCI + 0.05 M phosphate, pH 7.5) containing 6.2 mg./ml, of protein was 
added 0.05 ml. crystalline trypsin (0.05 per cent) at 23°C. The reaction was 
stopped by the addition of 0.05 ml. of a 1 per cent soybean trypsin inhibitor to 
each of the three aliquots 2.5, 7, and 20 minutes after addition of the trypsin. 
These solutions, together with the control solution untreated with trypsin or 
inhibitor, were spun in pairs in the ultracentrifuge using wedge-window cells. 
The control material shows a single hypersharp boundary typical of solutions 
containing interacting, very long macromolecular polymers (see top record in 
Fig. 1). The material after 2.5 minutes tryptic action behaved similarly. After 7 
minutes tryptic action the peak, though at first sharp and traveling with the 
same velocity as that of the control, spread by diffusion (see lower record in 
Fig. 1). A similar spreading peak was obtained with material after 20 minutes 
of tryptic action. These results demonstrate that a profound change in the 

1 We are grateful to Dr. Andrew G. Szent-Gy6rgyi for communicating to us these unpub- 
lished results. 
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R. H. LOCKER AND F. O. SCtIMITT 893 

protein occurs between 2.5 and 7 minutes of tryptic action. No further analysis 
of the effect was possible at the time although it seemed clear that the enzyme 
increased the diffusion rate without appreciable change in the sedimentation 
velocity. 

Although the effect of trypsin on paramyosin bears superficial resemblance to 
that on myosin, there are certain distinct differences, particularly in the trans- 
formation of the hypersharp peak to a spreading peak with the same velocity. 
This behavior is identical with that found by Macfarlane (13) in the decomposi- 
tion of tropomyosin by an enzyme from Clostridium oedematiens and interpreted 
by Keckwick (see 13) as a general breakdown of the molecule. This is interest- 
ing in view of Bailey's (8, 11) observation that the amino acid composition of 
the crystalline protein of the adductor muscles of Ostrea and Pinna is character- 
istic of a tropomyosin. 

Electron Microscopy of Reprecipitated Fibrils: 

A detailed study of the structure of paramyosin fibrils is in progress in this 
laboratory and will be reported in due course. The present brief description will 
concern only the material precipitated from slightly alkaline solutions by reduc- 
tion of ionic strength. 

From the work of Hodge (5, 6) it is probable that, in acid solutions, para- 
myosin fibrils break up into their constituent long, thin macromolecules and 
that, when the ionic strength is raised, the macromolecules aggregate in an 
antiparallel arrangement to form the symmetrically structured fibrous long- 
spacing modification. The possibility that a second uncharacterized compo- 
nent may be involved was also mentioned. 

Electron microscope examination 2 of the acicular crystals formed by dilution 
of a slightly alkaline solution and after staining with phosphotungstic acid 
(pH 4.5), shows that they are also of long-spacing type (see Fig. 2). The band 
pattern is symmetrical, suggesting an antiparallel packing of the constituent 
molecules. Measurement of several hundred reprecipitated fibrils shows rela- 
tively small spread of the axial period, varying chiefly between 1700 and 2000 A. 
This is significantly higher than the value of 1400 A reported by Hodge for the 
long-spacing fibrils precipitated from acid solution. The band pattern and in- 
tensities differ also somewhat, suggesting possible differences in the interaction 
patterns when macromolecular aggregation is induced by elevation of ionic 
strength (from acid solution) than by reduction of ionic strength (from faintly 
alkaline solutions). 

Several other features of the long-spacing band pattern may also be men- 
tioned. A tendency was noted for the formation of fibrils with an axial period 
one-fifth that of the long-spacing, i.e. about 360 to 400 A. Both types of strnc- 

T hanks  are due to Mr.  J. W. Jacques for technical assistance in the  preparation and 
examination of material  with the electron microscope. 
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894 PROPERTIES OF PAR_A_MYOSIN 

ture are shown in Fig. 2 side by side. I t  seems probable that these two forms 
represent different types of packing of the same elongated macromolecules. I t  
may also be suggested that this explains the first observations (1) on paramyo- 
sin fibrils which showed a simple band pattern with an axial period of about 
360 A. I t  was supposed at that time that the fibrils under observation in these 
earliest observations were of the native type; however, under the conditions 
of the experiment it is possible that some of the fibrils observed were in fact 
reprecipitated from dissolved paramyosin. 

Another phenomenon frequently observed is a variation in density along a 
given band or interband, i.e. perpendicular to the long axis of the fibril. This 
may be seen in Fig. 2, but it is particularly marked in Fig. 3 where the effect 
leads to a pronounced diagonal staggering. It  would seem that the effect is 
due to a lateral aggregation of very thin fibrils or elongated tactoids whose fine 
structure may be out of phase with each other by a discrete fraction of the axial 
period. 

The relationship between the various axial periods reported from electron 
microscopy and x-ray diffraction studies of intact adductor muscles, of individ- 
ual native fibrils and of various forms of reprecipitated protein is not clear. 
Discussion of this matter will therefore be postponed until more evidence is 
available. 

SUMMARY 

Paramyosin fibrils from the adductor muscles of Vem~s mercenaria are 
soluble above neutrality at relatively high ionic strength. From this viscous 
solution it is possible, by reduction in ionic strength, to reprecipitate acicular 
crystals of paramyosin. In the electron microscope these fibrils manifest a 
symmetrical band pattern similar to that previously described by Hodge but 
differing in some details. The axial periods observed under the conditions of the 
experiment varied between 1700 and 2000 A and a simple band pattern of one- 
fifth the main period was frequently observed. ATPase activity of the myosin 
type but of much lower intensity was demonstrated. Tryptic fission of the 
protein occurs but the characteristics differ from those of myosin. 
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896 PROPERTIES OF PARAMYOSIN 

EXPLANATION OF PLATE 289 

FIG. 1. Ultracentrifuge record of paramyosin preparation treated with crystalline 
trypsin. The series at top (with meniscus at right) shows the untrypsinized paramyo- 
sin control (upper Schlieren pattern) and the 7 minute sample (lower pattern), the 
frames being taken at 57, 105, 153, and 185 minutes after reaching top speed (60,000 
me.M.). The series at the bottom (with meniscus at left) are of the 21/~ minute and 20 
minute trypsinized samples (upper and lower patterns respectively), taken at 7, 39, 
103, and 135 minutes after reaching top speed. 

FIG. 2 A. Paramyosin long-spacing fibrils precipitated from slightly alkaline solu- 
tion by reduction in ionic strength to about 0.15. Stained with phosphotungstic acid. 
Magnification, 31,000. 

FIG. 2 B. Enlargement of region enclosed in rectangle in Fig. 2 A. Note 12-banded, 
axially symmetrical band pattern and adjacent fibril with simple band pattern with 
axial period one-fifth that of the large fibril. Repeating periods marked above. Mag- 
nification, 81,000. 

FIG. 3. Same as Fig. 2. Note stagger of band densities leading to a diagonal, pseudo- 
helical structure, due presumably to a slight shift in axial position of the macromole- 
cules. Magnification, 58,000. 
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